Abstract:
A motor controller comprising an inverter module including an inverter circuit coupled to a baseplate, wherein the baseplate includes cooling features; a cooling channel configured to receive a cooling fluid, wherein the cooling features extend into the cooling channel; a capacitor; and a laminated bus electrically coupling the capacitor to the inverter circuit and thermally coupling the capacitor to the cooling channel.
Abstract:
A frame for an electric vehicle with a motor and a transmission, the frame including a steering head unit, a power unit casing, a left side frame and a right side frame. The steering head unit includes a steering head, a left extension and a right extension, wherein the left extension and right extension extend at an angle from the steering head. The power unit casing encloses the motor and the transmission, orienting the gearbox of the transmission vertically underneath the motor. The left and right side frames mount, on one end, to the left and right extensions of the steering head unit, respectively, wherein the other end mounts to the left and right sides of the power unit casing, respectively. The steering head unit, the power unit, the left side frame and the right side frame form an open cage, configured to accept a battery assembly.
Abstract:
A motor controller comprising an inverter module including an inverter circuit coupled to a baseplate, wherein the baseplate includes cooling features; a cooling channel configured to receive a cooling fluid, wherein the cooling features extend into the cooling channel; a capacitor; and a laminated bus electrically coupling the capacitor to the inverter circuit and thermally coupling the capacitor to the cooling channel.
Abstract:
A power electronic system including a casing encapsulating a circuit board and multiple power electronic components mounted to a first broad face of the circuit board. The casing includes a case body, a first lid, and a second lid. The case body includes a cooling channel region including a cooling plate having a first and second broad face, cooling features extending from the cooling plate first broad face, and a cooling block extending from the cooling plate second broad face. The case body further includes a first access gap defined through the case body. The circuit board is mounted to the casing with the first broad face proximal the cooling plate second broad face. The power electronic system additionally includes a connector that extends from the case exterior to connect to the circuit board first broad face, wherein connector connection is facilitated by the first access gap.
Abstract:
A power electronic system including a casing encapsulating a circuit board and multiple power electronic components mounted to a first broad face of the circuit board. The casing includes a case body, a first lid, and a second lid. The case body includes a cooling channel region including a cooling plate having a first and second broad face, cooling features extending from the cooling plate first broad face, and a cooling block extending from the cooling plate second broad face. The case body further includes a first access gap defined through the case body. The circuit board is mounted to the casing with the first broad face proximal the cooling plate second broad face. The power electronic system additionally includes a connector that extends from the case exterior to connect to the circuit board first broad face, wherein connector connection is facilitated by the first access gap.
Abstract:
A system for cooling an electric motor, the electric motor including a stator disposed about a rotor, wherein cooling system includes a rotor assembly including a shaft with a shaft channel extending through the center of the shaft and radial channels extending radially from the shaft channel; a rotor with profiled rotor ends; and two guides, each coupled to a rotor end, that guides fluid from the shaft exterior to the rotor end. The system may additionally include interior channels that traverse through the rotor interior, wherein the interior channels fluidly couple the radial channels to a guide-rotor end pair. The system may also include stator cooling mechanisms, including cooling channels within the motor casing proximal to stator exterior surface and dispensing mechanisms that dispense working fluid to the stator coils.
Abstract:
A method for remotely monitoring and gathering information about a plurality of vehicles, including the steps of accessing the plurality of vehicles wherein each vehicle is individually operated, selecting vehicle data from the plurality of vehicles, communicating the vehicle data from the plurality of vehicles to a remote processor, and processing the plurality of vehicle data into population data by the remote processor. The individual operation of each vehicle preferably includes the steps of generating vehicle data, operating the vehicle based on the vehicle data with a vehicle controller, and storing the vehicle data in a database located on the vehicle.
Abstract:
In one embodiment, the invention is a frame for a ride-on vehicle having at least one front wheel, at least one rear wheel, and a plurality of substantially similar battery packs. The frame defines a central plane and includes a front end located adjacent to the front wheel(s), a rear end located adjacent to the rear wheel(s), and a lattice structure that extends substantially between the front end and the rear end. The lattice structure includes a first portion that includes battery pack mounts that secure a first subset of the battery packs arranged in two layers, and includes a second portion that includes battery pack mounts that secure a second subset of the batter packs arranged in a single layer. The lattice structure also defines a truss that mechanically couples the front wheel(s) to the rear wheel(s).