Abstract:
Stabilized multi-component antimicrobial compositions for treating tissue diseases, infections or conditions include a first and second set of differently sized and/or differently shaped metal nanoparticles, and a stabilizing agent. Compositions and treatment methods may be used for treating tissue diseases, infections or conditions caused by microbial infections, such as bacteria, viral, and/or fungal infections, or for preventing the infection of a wound, such as a cut, abrasion, ulcer, lesion, sore, and the like. The compositions and treatment methods disclosed herein may also be used as a prophylactic, and in some embodiments may be applied to otherwise healthy tissue in order to prevent or reduce the occurrence of a tissue disease, infection or condition.
Abstract:
Stabilized multi-component antimicrobial compositions for treating tissue diseases, infections or conditions include a first and second set of differently sized and/or differently shaped metal nanoparticles, and a stabilizing agent. Compositions and treatment methods may be used for treating tissue diseases, infections or conditions caused by microbial infections, such as bacteria, viral, and/or fungal infections, or for preventing the infection of a wound, such as a cut, abrasion, ulcer, lesion, sore, and the like. The compositions and treatment methods disclosed herein may also be used as a prophylactic, and in some embodiments may be applied to otherwise healthy tissue in order to prevent or reduce the occurrence of a tissue disease, infection or condition.
Abstract:
Anti-corrosion nanoparticle compositions include a carrier and a plurality of nonionic metal nanoparticles. The metal nanoparticles can be spherical-shaped and/or coral-shaped metal nanoparticles. The nanoparticles are selected so as to locate at the grain boundaries of a metal or metal alloy when the anti-corrosion composition is applied to the metal or alloy, thereby reducing or preventing intergranular corrosion of the metal or alloy.
Abstract:
Antimicrobial compositions for killing or deactivating microbes, such as viruses, bacteria, or fungi, include metal nanoparticles, a carrier, and a plurality of metal nanoparticles. The nanoparticles can be selected to have a particle size and particle size distribution to selectively and preferentially kill one of a virus, a bacterium, or a fungus. Antiviral compositions can include nanoparticles having a particle size of 8 nm or less, 1-7 nm, 2-6.5 nm, or 3-6 nm (or up to 10 nm for Ebola virus). Antibacterial compositions can include nanoparticles having a particle size of 3-14 nm, 5-13 nm, 7-12 nm, or 8-10 nm. Antifungal compositions can include nanoparticles having a particle size of 9-20 nm, 10-18 nm, 11-16 nm, or 12-15 nm. Exemplary methods of killing or deactivating microbes include: (1) applying an antimicrobial composition to a substrate containing microbes, and (2) the antimicrobial composition killing or deactivating the microbes.
Abstract:
This disclosure relates to metal nanoparticle compositions and methods for treating respiratory infections associated with cystic fibrosis. An amount of nonionic, ground state metal nanoparticles are administered to a patient via inhalation. The metal nanoparticles have properties that enable effective transport through the viscous mucus layer to the epithelia and surrounding tissues, killing or deactivating infecting microbes at the targeted respiratory tissue and throughout the overlying mucus layer.
Abstract:
A nanoparticle composition for treating onychomycosis includes spherical-shaped nanoparticles having a particle size and a particle size distribution and coral-shaped nanoparticles having a particle size and a particle size distribution mixed within a penetrating solvent configured to deliver the nanoparticles to target area of a nail and/or surrounding tissue. The nanoparticle composition can be mixed with a carrier to provide or augment application of the nanoparticle composition to a target area. The penetrating solvent can deliver the nanoparticles to an infected area within the nail and/or at the bed of the nail so as to kill or deactivate the fungal microbes causing the onychomycosis.
Abstract:
Stabilized multi-component antimicrobial compositions for treating tissue diseases, infections or conditions include a first and second set of differently sized and/or differently shaped metal nanoparticles, and a stabilizing agent. Compositions and treatment methods may be used for treating tissue diseases, infections or conditions caused by microbial infections, such as bacteria, viral, and/or fungal infections, or for preventing the infection of a wound, such as a cut, abrasion, ulcer, lesion, sore, and the like. The compositions and treatment methods disclosed herein may also be used as a prophylactic, and in some embodiments may be applied to otherwise healthy tissue in order to prevent or reduce the occurrence of a tissue disease, infection or condition.
Abstract:
Fuel additive compositions include a plurality of metal nanoparticles and a carrier that is dispersible in a hydrocarbon fuel. The metal nanoparticles can be spherical-shaped and/or coral-shaped metal nanoparticles. The carrier can be liquid, gel or solid and can be readily miscible or soluble in a hydrocarbon fuel such as gasoline, diesel, jet fuel, or fuel oil. The carrier can be a solid carrier configured to allow the hydrocarbon fuel to dissolve the solid carrier in order to release and disperse the metal nanoparticles within the hydrocarbon fuel.
Abstract:
Antimicrobial compositions for killing or deactivating microbes, such as viruses, bacteria, or fungi, include metal nanoparticles, a carrier, and a plurality of metal nanoparticles. The nanoparticles can be selected to have a particle size and particle size distribution to selectively and preferentially kill one of a virus, a bacterium, or a fungus. Antiviral compositions can include nanoparticles having a particle size of 8 nm or less, 1-7 nm, 2-6.5 nm, or 3-6 nm (or up to 10 nm for Ebola virus). Antibacterial compositions can include nanoparticles having a particle size of 3-14 nm, 5-13 nm, 7-12 nm, or 8-10 nm. Antifungal compositions can include nanoparticles having a particle size of 9-20 nm, 10-18 nm, 11-16 nm, or 12-15 nm. Exemplary methods of killing or deactivating microbes include: (1) applying an antimicrobial composition to a substrate containing microbes, and (2) the antimicrobial composition killing or deactivating the microbes.
Abstract:
An apparatus and process for creating uniformly sized, spherical nanoparticles from a solid target. The solid target surface is ablated to create an ejecta event containing nanoparticles moving away from the surface. Ablation may be caused by laser or electrostatic discharge. At least one electromagnetic field is placed in front of the solid target surface being ablated. The electromagnetic field manipulates at least a portion of the nanoparticles as they move away from the target surface through the electromagnetic field to increase size and spherical shape uniformity of the nanoparticles. The manipulated nanoparticles are collected.