Abstract:
This invention provides a system and method/process for treatment of fuel used in internal combustion engines that advantageously reduces greenhouse gasses and pollutants given off during combustion and provides all the above effects without the need to include additional traditional additives that increase costs and may be environmentally harmful. Nanoparticles of one or more metals are added to a fuel mixture, where the mixture consists of hydrophobic or hydrophilic biofuels of plant or animal origin and/or sulfur containing petroleum distillates. An electro-chemical process/method can then be employed, by passing a current through the mixture, to produce metal nanoparticles. These metal nanoparticles have a wide range of benefits when added to the fuel solution, and allow the user to avoid the use of such traditional fuel additives.
Abstract:
The present invention relates to an additized blended fuel composition comprising of 97 to 50 weight % of liquified petroleum gas (LPG); 3 to 50 weight % of dimethyl ether (DME); and a nanocatalyst. More particularly, the present invention relates to an improvement in the combustion efficiency of the DME blended LPG fuel by using catalytic amount of the nano-catalyst, when introduced in ppm level enhances the combustion properties, thereby increasing the flame temperature and reducing the consumption of fuel gas mixture.
Abstract:
A fire starter kit that includes a frame, a scratcher, a sparking road, and at least one fuel reservoir. The frame is having a first end, a second end, a middle region, a recess provided on the middle region, and a first slot provided along the first end, the second end and partially through the middle region. The scratcher removably mounted in the recess, wherein the scratcher is having at least one blade provided with a plurality of tooths. The sparking rod is removably mounted within the first slot, wherein the sparking rod is configured to produce sparks when scratched with the scratcher.
Abstract:
In order to blend fuels to meet specific regulatory and industry requirements, for instance octane requirements, different octane blending components can be used. One added component includes a composition of higher aromatics content. Unfortunately, this aromatic content may increase the particulate emissions of an internal combustion engine when the high aromatic fuel is combusted in that engine. As explained herein, reducing the aromatics content and replacing that octane increasing requirement with an alternative octane enhancer results in a formulated fuel that will have lower particulate emissions in the real-world driving of that engine as compared with a fuel having higher aromatic content.
Abstract:
A method of inhibiting vanadic corrosion of a hot part of a gas turbine system is provided. The method includes introducing, in the combustor, a first oxide comprising magnesium oxide (MgO) and at least one second oxide from among Al2O3, Fe2O3, TiO2 and SiO2. A ratio “m” of a number of moles of MgO to a number of moles of V2O5 and a ratio “a” of a total number of moles of the at least one second oxide to the number of moles of V2O5 satisfy two conditions based on a firing temperature of the expansion turbine, an average density of one or more double oxides formed by a reaction between MgO and the at least one second oxide, and an average Knoop hardness of the one or more double oxides formed by the reaction between MgO and the at least one second oxide.
Abstract translation:提供了一种抑制燃气轮机系统的热部分的钒腐蚀的方法。 该方法包括在燃烧器中引入包含氧化镁(MgO)和来自Al 2 O 3,Fe 2 O 3,TiO 2和SiO 2中的至少一种第二氧化物的第一氧化物。 MgO的摩尔数与V 2 O 5的摩尔数的比“m”以及至少一种第二氧化物的总摩尔数与V 2 O 5的摩尔数之比“a”满足以下条件: 膨胀涡轮机的烧成温度,通过MgO和至少一种第二氧化物之间的反应形成的一种或多种双氧化物的平均密度,以及通过MgO与MgO的反应形成的一种或多种双重氧化物的平均Knoop硬度 所述至少一种第二氧化物。
Abstract:
Fuel additive compositions include a plurality of metal nanoparticles and a carrier that is dispersible in a hydrocarbon fuel. The metal nanoparticles can be spherical-shaped and/or coral-shaped metal nanoparticles. The carrier can be liquid, gel or solid and can be readily miscible or soluble in a hydrocarbon fuel such as gasoline, diesel, jet fuel, or fuel oil. The carrier can be a solid carrier configured to allow the hydrocarbon fuel to dissolve the solid carrier in order to release and disperse the metal nanoparticles within the hydrocarbon fuel.
Abstract:
The present description relates to a method and system for generating a fuel pellet from high sulfur fuel waste materials having a reduced SO2 emission. In one example, the fuel pellet may include petroleum coke, a biomass constituent, and an alkali substituent. Further in another example, the fuel pellet may include iron oxide catalyst increasing the capture of SO2.
Abstract:
A process for making cerium-containing oxide nanoparticles includes providing an aqueous reaction mixture containing a source of cerous ion, optionally a source of one or more metal ions (M) other than cerium, a source of hydroxide ion, at least one monoether carboxylic acid nanoparticle stabilizer wherein the molar ratio of said monoether carboxylic acid nanoparticle stabilizers to total metal ions is greater than 0.2, and an oxidant. The cerous ion is oxidized to ceric ion, thereby forming a product dispersion of cerium-containing oxide nanoparticles, optionally containing one or more metal ions (M), Ce1-xMxO2-δ, wherein x has a value from about 0.001 to about 0.95 and δ has a value of about 0.0 to about 0.5. The nanoparticles may have a mean hydrodynamic diameter from about 1 nm to about 50 nm, and a geometric diameter of less than about 45 nm.
Abstract:
A process for making cerium-containing oxide nanoparticles includes providing an aqueous reaction mixture containing a source of cerous ion, optionally a source of one or more metal ions (M) other than cerium, a source of hydroxide ion, at least one monoether carboxylic acid nanoparticle stabilizer wherein the molar ratio of said monoether carboxylic acid nanoparticle stabilizers to total metal ions is greater than 0.2, and an oxidant at an initial temperature in the range of about 20° C. to about 95° C. Temperature conditions are provided effective to enable oxidation of cerous ion to ceric ion, thereby forming a product dispersion of cerium-containing oxide nanoparticles, optionally containing one or more metal ions (M), Ce1-xMxO2-δ, wherein “x” has a value from about 0.0 to about 0.95. The nanoparticles may have a mean hydrodynamic diameter from about 1 nm to about 50 nm, and a geometric diameter of less than about 45 nm.
Abstract:
A power source that provides at least one of thermal and electrical power and method of use thereof such as direct electricity or thermal to electricity is provided that powers a power system comprising (i) at least one reaction cell comprising a fuel having atomic hydrogen, nascent H2O; and a material to cause the fuel to be highly conductive, (iii) at least one set of electrodes that confine the fuel and an electrical power source that provides a short burst of low-voltage, high-current electrical energy to initiate a reaction and an energy gain, (iv) a product recovery systems such as a condensor, (v) a reloading system, (vi) at least one of hydration, thermal, chemical, and electrochemical systems to regenerate the fuel from the reaction products, (vii) a heat sink that accepts the heat from the power-producing reactions, (viii) a power conversion system.