摘要:
Provided are systems and methods for propulsion and powering systems using recyclable metallic fuels. The method includes capturing fuel products, including a metal oxide and unburnt fuel from combustion of a metallic fuel, storing the unburnt metallic fuel and the fuel products to generate power and/or thrust, and recycling the metal oxide to recreate the metallic fuel and/or byproducts. A system for propulsion and power generation using a metallic fuel includes a combustion chamber for combusting the metallic fuel to provide propulsion, a reaction chamber for generating electricity and thermal power using heat from unburnt metallic fuel and fuel products, a storage system for capturing the unburnt metallic fuel and the fuel products and at least one recycling system for directing the captured unburnt metallic fuel and/or the fuel products to the combustion chamber and/or the reaction chamber.
摘要:
Fuel additive compositions include a plurality of metal nanoparticles and a carrier that is dispersible in a hydrocarbon fuel. The metal nanoparticles can be spherical-shaped and/or coral-shaped metal nanoparticles. The carrier can be liquid, gel or solid and can be readily miscible or soluble in a hydrocarbon fuel such as gasoline, diesel, jet fuel, or fuel oil. The carrier can be a solid carrier configured to allow the hydrocarbon fuel to dissolve the solid carrier in order to release and disperse the metal nanoparticles within the hydrocarbon fuel.
摘要:
This invention provides processes and systems for converting biomass into high-carbon biogenic reagents that are suitable for a variety of commercial applications. Some embodiments employ pyrolysis in the presence of an inert gas to generate hot pyrolyzed solids, condensable vapors, and non-condensable gases, followed by separation of vapors and gases, and cooling of the hot pyrolyzed solids in the presence of the inert gas. Additives may be introduced during processing or combined with the reagent, or both. The biogenic reagent may include at least 70 wt %, 80 wt %, 90 wt %, 95 wt %, or more total carbon on a dry basis. The biogenic reagent may have an energy content of at least 12,000 Btu/lb, 13,000 Btu/lb, 14,000 Btu/lb, or 14,500 Btu/lb on a dry basis. The biogenic reagent may be formed into fine powders, or structural objects. The structural objects may have a structure and/or strength that derive from the feedstock, heat rate, and additives.
摘要:
The present disclosure is directed to an additive mixture and method for controlling nitrogen oxide(s) by adding the additive mixture to a feed material prior to combustion.
摘要:
This invention provides processes and systems for converting biomass into high-carbon biogenic reagents that are suitable for a variety of commercial applications. Some embodiments employ pyrolysis in the presence of an inert gas to generate hot pyrolyzed solids, condensable vapors, and non-condensable gases, followed by separation of vapors and gases, and cooling of the hot pyrolyzed solids in the presence of the inert gas. Additives may be introduced during processing or combined with the reagent, or both. The biogenic reagent may include at least 70 wt %, 80 wt %, 90 wt %, 95 wt %, or more total carbon on a dry basis. The biogenic reagent may have an energy content of at least 12,000 Btu/lb, 13,000 Btu/lb, 14,000 Btu/lb, or 14,500 Btu/lb on a dry basis. The biogenic reagent may be formed into fine powders, or structural objects. The structural objects may have a structure and/or strength that derive from the feedstock, heat rate, and additives.
摘要:
This invention provides processes and systems for converting biomass into high-carbon biogenic reagents that are suitable for a variety of commercial applications. Some embodiments employ pyrolysis in the presence of an inert gas to generate hot pyrolyzed solids, condensable vapors, and non-condensable gases, followed by separation of vapors and gases, and cooling of the hot pyrolyzed solids in the presence of the inert gas. Additives may be introduced during processing or combined with the reagent, or both. The biogenic reagent may include at least 70 wt %, 80 wt %, 90 wt %, 95 wt %, or more total carbon on a dry basis. The biogenic reagent may have an energy content of at least 12,000 Btu/lb, 13,000 Btu/lb, 14,000 Btu/lb, or 14,500 Btu/lb on a dry basis. The biogenic reagent may be formed into fine powders, or structural objects. The structural objects may have a structure and/or strength that derive from the feedstock, heat rate, and additives.
摘要:
A formulation and methods for making high energy organic fuels that incorporate suspended metal particles with metal particle sized ranging from 33 nm to 5 micron. The hybrid organic fuels contain superior density and/or energy content to conventional liquid organic fuels. These hybrid organic fuels used in combination with metal particle afford fuels with 5 to 80% more net heat of combustion (based on volume). These fuels should extend the distant range for jets, liquid rocket engines, SCRAM jet engines, and improve energy content in fuel-air explosive applications such as fuel-air explosives and in the Multi-Effects Weapons System (MEWS) where the fuel is used both for propulsion and explosive effects.
摘要:
This invention provides processes and systems for converting biomass into high-carbon biogenic reagents that are suitable for a variety of commercial applications. High carbon biogenic reagents are also provided.
摘要:
This invention provides processes and systems for converting biomass into high-carbon biogenic reagents that are suitable for a variety of commercial applications. Some embodiments employ pyrolysis in the presence of an inert gas to generate hot pyrolyzed solids, condensable vapors, and non-condensable gases, followed by separation of vapors and gases, and cooling of the hot pyrolyzed solids in the presence of the inert gas. Additives may be introduced during processing or combined with the reagent, or both. The biogenic reagent may include at least 70 wt %, 80 wt %, 90 wt %, 95 wt %, or more total carbon on a dry basis. The biogenic reagent may have an energy content of at least 12,000 Btu/lb, 13,000 Btu/lb, 14,000 Btu/lb, or 14,500 Btu/lb on a dry basis. The biogenic reagent may be formed into fine powders, or structural objects. The structural objects may have a structure and/or strength that derive from the feedstock, heat rate, and additives.
摘要:
This invention provides processes and systems for converting biomass into high-carbon biogenic reagents that are suitable for a variety of commercial applications. High carbon biogenic reagents are also provided.