Abstract:
A non-settling refractory mortar is provided, which includes 100 mass % of a ceramic powder such as cordierite, mullite, alumina, or silicon carbide, 0.5 to 1.5 mass % of a clay mineral, and a colloidal oxide solution, in which the Ca content in the total solid component is defined at 0.01 to 0.5 mass % as converted to oxide so as to be provided with a thixotropic property. As a result, the coating performance is not lowered if stored for a long period after kneading, the dimension change rate after coating is small, and cracks or gaps are not formed on the coat surface. The median diameter of ceramic powder is preferred to be 10 to 50 μm, and in order to reduce the dimension change rate after coating, the content of particles of 0.1 to 5 μm in ceramic powder is desired to be 1 to 20%.
Abstract:
The invention relates to a Monolithic refractory material used in refractories and refractory ceramic products, and more particularly to a Monolithic refractory material having low expansibility, high strength, and crack extension resistance used for the purpose of repairing, protecting, modifying, filling, and forming the surface, adhesive surface, interface, or joint of low-expansion fire bricks and refractory ceramic products. The Monolithic refractory material of the invention is a Monolithic refractory material prepared by kneading cordierite powder, having a median diameter in a range of 10 to 50 μm, and a sharp mountain-like particle size distribution in which the content of particles smaller than 10 μm is 1% or more to 36% or less, the content of particles ranging from 10 μm or more to 50 μm or less is 50% or more to 75% or less, and the content of particles of 51 μm or more is 1% or more to 14% or less, and a solvent composed of water and alumina sol or silica sol solution.
Abstract:
The non-settling refractory mortar of the invention contains 100 parts of ceramic powder such as cordierite, mullite, alumina, or silicon carbide, 0.5 to 1.5 parts of clay mineral, and colloidal oxide solution, in which the Ca content in total solid component is defined at 0.01 to 0.5% as converted to oxide so as to be provided with thixotropic property. As a result, the coating performance is not lowered if stored for a long period after kneading, the dimension change rate after coating is small, and cracks or gaps are not formed on the coat surface. The median diameter of ceramic powder is preferred to be 10 to 50 μm, and in order to reduce the dimension change rate after coating, the content of particles of 0.1 to 5 μm in ceramic powder is desired to be 1 to 20%.
Abstract:
A monolithic refractory material is provided by a method including the steps of kneading cordierite powder having a median diameter in a range of 10 to 50 μm, and having a sharp mountain-like particle size distribution in which the content of particles smaller than 10 μm is 1% or more to 36% or less, the content of particles ranging from 10 μm or more to 50 μm or less is 50% or more to 75% or less, and the content of particles of 51 μm or more is 1% or more to 14% or less, and a solvent including water and alumina sol or silica sol solution.
Abstract:
A refractory mortar cured material is formed in the surface or joint portions of a ceramic refractory material, such as fire bricks used in the lining of melting furnace or firing furnace used at high temperature, and includes ceramic particles with an inorganic binder having silanol group that are kneaded together with water. The kneaded mortar is applied on the surface of a ceramic base material. The average particle size of ceramic particles in the refractory mortar is 10 to 50 μm, and the difference between the 90% particle size and the 10% particle size is 10 μm or more to 60 μm or less. The average pore size of the refractory mortar cured material is 5 to 25 μm, and the width of pore size distribution is 20 to 80 μm, so that the cracks are suppressed. In addition, the bulk density is 0.9 to 1.5 g/cm3.
Abstract translation:陶瓷耐火材料的表面或接合部分形成耐火灰浆固化材料,例如在熔化炉衬里或在高温下使用的焙烧炉中使用的火砖,并且包括具有硅烷醇基的无机粘合剂的陶瓷颗粒, 与水一起捏合。 将捏合的砂浆施加在陶瓷基材的表面上。 难熔砂浆中的陶瓷粒子的平均粒径为10〜50μm,90%粒径和10%粒径的差为10μm以上至60μm以下。 难熔灰浆固化物的平均孔径为5〜25μm,孔径分布的宽度为20〜80μm,抑制了裂纹。 此外,堆积密度为0.9〜1.5g / cm 3。
Abstract:
A filtering medium for molten metal which is excellent in inclusion removal performance and durability and further may provide sufficient throughput and a method for producing the same. A filtering medium for molten metal in the present invention includes a two-layered structure of a macropore ceramic layer at the inflow side and a micropore ceramic layer at the outflow side. The average pore diameter of the micropore ceramic layer is from 100 to 500 μm and the average pore diameter of the macropore ceramic layer is 1.1 to 3.0 times as large as that of the micropore ceramic layer. When respective layers are formed of aggregates bonded with an inorganic binder and the inorganic binder has a needle crystal structure with an aspect ratio of 2 to 50, the inside of filtering medium may be contributed to the filtration and the compatibility between inclusion-trapping performance and lifetime may be ensured.
Abstract:
A ceramic honeycomb structure has an open frontal area of 50% to 85%, a porosity of 0.1% to 10%, and a proportion of the volume of pores of 1 &mgr;m or larger in diameter, in total pore volume, of 20% or more; a regenerative thermal oxidizer using the ceramic honeycomb structure. The ceramic honeycomb structure has a small porosity and, therefore, has a sufficient heat accumulation capacity and hardly causes floating by gas pressure; has controlled pore diameters and, therefore, hardly shows adsorption of VOC or the like, or rupture; and has controlled contraction and, therefore, has a large GSA.
Abstract:
The refractory mortar cured material of the invention formed in the surface or joint portions of a ceramic refractory material such as fire bricks used in the lining of melting furnace or firing furnace used at high temperature is composed by kneading ceramic particles with an inorganic binder having silanol group together with water, and forming the kneaded mortar on the surface of a ceramic base material. The average particle size of ceramic particles in the refractory mortar is 10 to 50 μm, the difference of 90% particle size and 10% particle size is 10 μm or more to 60 μm or less, the average pore size of the refractory mortar cured material is 5 to 25 μm, and the width of pore size distribution is 20 to 80 μm, so that the cracks may be suppressed. More preferably, the bulk density is 0.9 to 1.5 g/cm3.
Abstract translation:形成于陶瓷耐火材料的表面或接合部分的本发明的耐火灰浆固化材料是通过将陶瓷颗粒与具有硅烷醇的无机粘合剂混合而构成的。 与水一起组合,并在陶瓷基材的表面上形成捏合的砂浆。 耐火砂浆中的陶瓷粒子的平均粒径为10〜50μm,粒径90%,粒径为10%的粒子的平均粒径为10μm〜60μm,耐火灰浆固化物的平均孔径 为5〜25μm,孔径分布的宽度为20〜80μm,可以抑制裂纹。 更优选地,堆积密度为0.9〜1.5g / cm 3。