Abstract:
Embodiments are directed to a method of rendering adaptive audio by receiving input audio comprising channel-based audio, audio objects, and dynamic objects, wherein the dynamic objects are classified as sets of low-priority dynamic objects and high-priority dynamic objects, rendering the channel-based audio, the audio objects, and the low-priority dynamic objects in a first rendering processor of an audio processing system, and rendering the high-priority dynamic objects in a second rendering processor of the audio processing system. The rendered audio is then subject to virtualization and post-processing steps for playback through soundbars and other similar limited height capable speakers.
Abstract:
A method and apparatus for enhancing a desired audio signal for delivery through an electroacoustic channel include obtaining a noise estimate attributable to an external disturbance, applying the noise estimate to a dynamic noise compensation (DNC) process to thereby condition the desired audio signal as a function of the spectral characteristics of the noise estimate, applying the noise estimate to an adaptive equalization (AEQ) process to thereby condition the desired audio signal as a function of the electroacoustic response of the electroacoustic channel, and applying the noise estimate to an active noise cancellation (ANC) process configured to generate anti-noise for delivery into the electroacoustic channel.
Abstract:
In one embodiment the present invention includes a circuit for automatically adjusting an output of an audio device. The circuit includes a memory circuit, a detector circuit, a control circuit, and an output circuit. The memory circuit stores configuration information. The detector circuit detects environment information related to an environment in which the apparatus is present. The control circuit selects selected configuration information from the memory circuit according to the environment information detected by the detector circuit. The output circuit receives an input audio signal and the selected configuration information, modifies the input audio signal according to the selected configuration information, and generates an output audio signal corresponding to the input audio signal as modified according to the selected configuration information.
Abstract:
A method and apparatus for enhancing a desired audio signal for delivery through an electroacoustic channel include obtaining a noise estimate attributable to an external disturbance, applying the noise estimate to a dynamic noise compensation (DNC) process to thereby condition the desired audio signal as a function of the spectral characteristics of the noise estimate, applying the noise estimate to an adaptive equalization (AEQ) process to thereby condition the desired audio signal as a function of the electroacoustic response of the electroacoustic channel, and applying the noise estimate to an active noise cancellation (ANC) process configured to generate anti-noise for delivery into the electroacoustic channel.
Abstract:
Distortion reducing multi-band compressor with timbre preservation is provided. Timbre preservation is achieved by determining a time-varying threshold in each of a plurality frequency bands as a function of a respective fixed threshold for the frequency band and, at least in part, an audio signal level and a fixed threshold outside such frequency band. If a particular frequency band receives significant gain reduction due to being above or approaching its fixed threshold, then a time-varying threshold of one or more other frequency bands are also decreased to receive some gain reduction. In a specific embodiment, time-varying thresholds can be computed from an average difference of the audio input signal in each frequency band and its respective fixed threshold.
Abstract:
A method for an audio/video (A/V) system includes accessing processing modules for downloadable applications. Each downloadable application can have at least one processing module and data for a graphical user interface (GUI), and each processing module can be configured to interact with an upgradable engine to adjust a performance or a setting of an audio and video (A/V) equipment. The method includes arranging an order of two or more of the processing modules in a processing chain to share processing resources, to reduce a processing requirement of the A/V equipment, or to enhance a level of performance of the A/V equipment.
Abstract:
A method for an audio/video (A/V) system includes accessing processing modules for downloadable applications. Each downloadable application can have at least one processing module and data for a graphical user interface (GUI), and each processing module can be configured to interact with an upgradable engine to adjust a performance or a setting of an audio and video (A/V) equipment. The method includes arranging an order of two or more of the processing modules in a processing chain to share processing resources, to reduce a processing requirement of the A/V equipment, or to enhance a level of performance of the A/V equipment.
Abstract:
Apparatuses for and methods of carrying out dynamic equalization processing of an audio signal, and apparatuses for and methods of controlling such equalization processing of the audio signal to dynamically adjust the time-varying spectrum of an audio signal to more closely match a user specified target time-invariant perceived audio signal spectrum while preserving the original dynamic range of the audio signal. The dynamic equalization is carried out according to a user-defined spectral profile specified by a control interface that allows a user to define, create, modify and/or apply the user-defined spectral profile.
Abstract:
In one embodiment the present invention includes a circuit for automatically adjusting an output of an audio device. The circuit includes a memory circuit, a detector circuit, a control circuit, and an output circuit. The memory circuit stores configuration information. The detector circuit detects environment information related to an environment in which the apparatus is present. The control circuit selects selected configuration information from the memory circuit according to the environment information detected by the detector circuit. The output circuit receives an input audio signal and the selected configuration information, modifies the input audio signal according to the selected configuration information, and generates an output audio signal corresponding to the input audio signal as modified according to the selected configuration information.
Abstract:
Apparatuses for and methods of carrying out dynamic equalization processing of an audio signal, and apparatuses for and methods of controlling such equalization processing of the audio signal to dynamically adjust the time-varying spectrum of an audio signal to more closely match a user specified target time-invariant perceived audio signal spectrum while preserving the original dynamic range of the audio signal. The dynamic equalization is carried out according to a user-defined spectral profile specified by a control interface that allows a user to define, create, modify and/or apply the user-defined spectral profile.