摘要:
A process is provided for the formation of miniaturized getter deposits, comprising the steps of forming a layer of a photosensitive polymeric material on a support; selectively exposing the polymeric layer in order to cause a chemical modification in a portion of the polymeric layer; removing with a first solvent only one of the previously exposed or the not previously exposed portions of the polymeric layer, thus forming cavities in the polymeric layer; forming a thin layer of a getter material by cathodic deposition at the bottom of the cavity and on the residual polymer; and removing with a second solvent the polymer portion not removed by the first solvent, leaving at least a getter material deposit on the support surface.
摘要:
Getter multilayer structures are disclosed, embodiments of which include at least a layer of a non-evaporable getter alloy having a low activation temperature over a layer of a different non-evaporable getter material having high specific surface area, both preferably obtained by cathodic deposition. The multilayer NEG structures exhibit better gas sorbing characteristics and lower activation temperature lower than those of deposits made up of a single material. A process for manufacturing such structures includes depositing a first, high surface area NEG film on a support, and then depositing a thin over layer of low activation NEG film.
摘要:
A getter device is shaped like a substrate used in a deposition process. Embodiments of the device include a powdered getter material coated onto one or both sides of a support with a narrow rim portion left uncoated so that the device can be manipulated by automatic handling equipment. A method for using the getter device includes providing a vacuum chamber and automatic handling equipment, loading the device into the chamber, reducing the chamber pressure to a desired value by using the getter device in conjunction with an external pump, removing the getter device and replacing it with a substrate, and depositing a thin film on the substrate. The getter device can be in an activated state when loaded into the chamber, or it can be activated after being loaded by employing heating equipment ordinarily used to heat substrates placed in the chamber. The getter material of the device may also be activated in a separate activation chamber before the getter device is loaded into the vacuum chamber.
摘要:
A method for reducing the loss of particles from the surface of porous getter bodies is taught herein. The method consists in producing on the surface of the porous getter a thin layer of a metal or metal alloy with a deposition technique selected among the deposition of materials from arc generated plasma, ionic beam deposition and cathodic deposition. The deposition technique allows for granular or columnar surface of the covering material but still allowing access to the surface of the getter material, resulting in a reduced getter particle loss.
摘要:
A process is disclosed for producing non-evaporable getter materials having high porosity and improved gas absorption rates. The process includes mixing together a metallic getter element, a getter alloy and a solid organic compound, all three components being in the form of powders having specific particle sizes. The mixture is subjected to a compression of less than about 1000 kg/cm.sup.2 and is sintered at a temperature between about 900.degree. C. and about 1200.degree. C. for a period between about 5 minutes and about 60 minutes. The getter material thus obtained is used to produce getter bodies shaped as pellets, sheets or discs having better mechanical strength than similar bodies of other getter material having comparable porosity.
摘要翻译:公开了一种用于生产具有高孔隙率和改善的气体吸收速率的非蒸发性吸气剂材料的方法。 该方法包括将金属吸气剂元件,吸气剂合金和固体有机化合物混合在一起,所有三种组分都是具有特定粒径的粉末形式。 将混合物经受小于约1000kg / cm 2的压缩,并在约900℃至约1200℃的温度下烧结约5分钟至约60分钟。 由此获得的吸气剂材料用于生产具有比具有可比较的孔隙率的其它吸气材料的类似物体更好的机械强度的颗粒,片或盘形状的吸气体。
摘要:
Improved solar collectors receiver tubes are described. The improved solar collectors receiver tubes have a getter system containing one or more getter materials in the form of pills housed a single line in a suitable holder.
摘要:
A method for reducing the loss of particles from the surface of porous getter bodies is taught herein. The method consists in producing on the surface of the porous getter a thin layer of a metal or metal alloy with a deposition technique selected among the deposition of materials from arc generated plasma, ionic beam deposition and cathodic deposition. The deposition technique allows for granular or columnar surface of the covering material but still allowing access to the surface of the getter material, resulting in a reduced getter particle loss.
摘要:
A process is disclosed for producing non-evaporable getter materials having high porosity and improved gas sorption rates. The process includes mixing together a metallic getter element, a getter alloy and a solid organic compound, all three components being in the form of powders having specific particle sizes. The mixture is subjected to a compression of less than about 1000 kg/cm.sup.2 and is sintered at a temperature between about 900.degree. C. and about 1200.degree. C. for a period between about 5 minutes and about 60 minutes. The getter material thus obtained is used to produce getter bodies shaped as pellets, sheets or discs having better mechanical strength than similar bodies of other getter material having comparable porosity.
摘要翻译:公开了用于生产具有高孔隙率和改善的气体吸附速率的非蒸发性吸气剂材料的方法。 该方法包括将金属吸气剂元件,吸气剂合金和固体有机化合物混合在一起,所有三种组分都是具有特定粒径的粉末形式。 将混合物经受小于约1000kg / cm 2的压缩,并在约900℃至约1200℃的温度下烧结约5分钟至约60分钟。 由此获得的吸气剂材料用于生产具有比具有可比较的孔隙率的其它吸气材料的类似物体更好的机械强度的颗粒,片或盘形状的吸气体。
摘要:
A getter pump module includes a number of getter disks provided with axial holes, and a heating element which extends through the holes to support and heat the getter disks. The getter disks are preferably solid, porous, sintered getter disks that are provided with a titanium hub that engages the heating element. A thermally isolating shield is provided to shield the getter disks from heat sources and heat sinks within the chamber, and to aid in the rapid regeneration of the getter disks. In certain embodiments of the present invention the heat shields are fixed, and in other embodiments the heat shield is movable. In one embodiment, a focus shield is provided to reflect thermal energy to the getter material from an external heater element and provide high pumping speeds. An embodiment of the present invention also provides for a rotating getter element to enhance getter material utilization.