Abstract:
The present invention concerns genetically stable transformed Lemnaceae plants and methods for their transformation by Agrobacterium cells. The present invention further concerns a method for regeneration of plants from calli, utilizing low sucrose media and products of interest produce from said plants. The present invention further concerns booster media for use in the above methods.
Abstract:
A chimeric gene construct comprising a DNA sequence encoding an enzyme having aspartate kinase (AK) activity is provided, which is capable of expression in plant cells with subsequent increased production of threonine. Transgenic plants containing in their cells said chimeric gene overproduce threonine and transgenic plants containing in their cells said chimeric gene and a second chimeric gene comprising a DNA sequence coding for an enzyme having dihydrodipicolinate synthase (DHPS) activity, overproduce both threonine and lysine. The transgenic plants are resistant to lysine and threonine, to derivatives thereof and to selective inhibitors of the plant enzymes DHPS or AK, and thus these compounds may be used as selective herbicides in locus where the transgenic plants are cultivated.
Abstract:
A method of introducing cytoplasmically inherited traits from a donor plant into a receptor plant of the Solanaceae family has been invented. A method is provided for producing Solanum tuberosum plants which have the inherited trait. Protoplasts from the donor and receptor plants are prepared. The donor protoplasts are treated under suitable conditions to prevent extensive nuclear divisions. The treated donor protoplasts and receptor protoplasts are then contacted under suitable conditions permitting the fusion of the protoplasts. Plantlets are regenerated from the fused protoplasts, and plantlets which contain the donor cytoplasmic traits are selected and rooted. Plantlets which contain recpetor cytoplasmic traits are discarded.
Abstract:
A method of introducing cytoplasmically inherited traits from a donor plant into a receptor plant of the Solanaceae family has been invented. Protoplasts from the donor and receptor plants are prepared. The donor protoplasts are treated under suitable conditions to prevent extensive nuclear divisions. The treated donor protoplasts and receptor protoplasts are then contacted under suitable conditions permitting the fusion of the protoplasts. Plantlets are regenerated from the fused protoplasts, and plantlets which contain the donor cytoplasmic traits are selected and rooted. Plantlets which contain receptor cytoplasmic traits are discarded.