Abstract:
Disclosed is a channel power adjustment method and system based on positional information of plural self-organizing subnets in a restricted area. The method includes a first setting step of setting, based on the positional information of the plural self-organizing subnets, a positional priority for each of the plural self-organizing subnets; and a first adjustment step of adjusting, at least partially based on the positional priorities of the plural self-organizing subnets, a power of a first device in a first self-organizing subnet working in a first channel, satisfying a predetermined rule to a first power of the first channel.
Abstract:
Disclosed are a verifier used in a mobile node and a method of controlling plural states of the mobile node. The verifier comprises a secret key receiving part configured to listen and receive at least one secret key from at least one secret key transmitter in an area limited Ad-hoc network; a secret key stamp generating part configured to perform calculation on the at least one secret key according to a predetermined verification rule so as to generate a secret key stamp; and a secret key stamp verifying part configured to compare the secret key stamp and a predetermined standard value, wherein, if the secret key stamp is equal to the predetermined standard value, then the secret key is determined as valid, otherwise, the secret key is determined as invalid.
Abstract:
Disclosed is a method of recognizing a user of at least one mobile device by using an imaging device. The method comprises a first obtainment step of obtaining first positional information of the user of the at least one mobile device by using the imaging device; a second obtainment step of obtaining both second positional information and ID information of the at least one mobile device; a comparison step of comparing the first and second positional information so as to obtain a comparison result; and a determination step of determining, based on the comparison result, whether or not to let the ID information of the at least one mobile device be associated with the user of the at least one mobile device.
Abstract:
Disclosed is a method of determining a distance between a first device and a second device in a wireless environment. The method includes steps of obtaining environmental parameters in a LOS propagation environment; determining whether the environment between the first device and the second device is the LOS propagation environment or a NLOS propagation environment; and calculating, based on the determination result of the determining step, the distance between the first device and the second device by utilizing the environmental parameters in the LOS or NLOS propagation environment as well as a path loss model.
Abstract:
A method and an apparatus for discovering a node in a wireless self-organized network are disclosed. The method comprises the steps of determining, by nodes in the network, a unified node discovery channel based on unified information provided by a trusted third party; and finding the node based on the unified node discovery channel. According to the node discovering method, a node can be discovered rapidly, and the time for discovering a node can be reduced.
Abstract:
Disclosed is a relative orientation angle calculation method comprising steps of obtaining inertial sensor data of first and second mobile devices, the first mobile device being capable of sending a first signal to the second mobile device; obtaining a sending frequency that the first signal has when the first mobile device sends the first signal to the second mobile device; obtaining a receipt frequency that the first signal has when the second mobile device receives the first signal sent from the first mobile device, the first signal receiving influence of the Doppler effect in a sending process in which the first signal is sent to the second mobile device from the first mobile device; and calculating, based on the inertial sensor data, the sending frequency, and the receipt frequency, a relative orientation angle between the first and second mobile devices.
Abstract:
Disclosed is a method of determining a distance between a first device and a second device in a wireless environment. The method includes steps of obtaining environmental parameters in a LOS propagation environment; determining whether the environment between the first device and the second device is the LOS propagation environment or a NLOS propagation environment; and calculating, based on the determination result of the determining step, the distance between the first device and the second device by utilizing the environmental parameters in the LOS or NLOS propagation environment as well as a path loss model.
Abstract:
Disclosed are a verifier used in a mobile node and a method of controlling plural states of the mobile node. The verifier comprises a secret key receiving part configured to listen and receive at least one secret key from at least one secret key transmitter in an area limited Ad-hoc network; a secret key stamp generating part configured to perform calculation on the at least one secret key according to a predetermined verification rule so as to generate a secret key stamp; and a secret key stamp verifying part configured to compare the secret key stamp and a predetermined standard value, wherein, if the secret key stamp is equal to the predetermined standard value, then the secret key is determined as valid, otherwise, the secret key is determined as invalid.
Abstract:
An apparatus for the micromanipulation of micro-sized objects includes a micromanipulation device in the form of a hollow frame having a base, resiliently deflectable arms projecting from the base and defining a gap for receiving a micro-sized object, and a saddle connected to the tips of the arms between the base and the tips. A force generating device applies a force to the saddle to deflect the tips inwards to close the gap about the micro-sized object. A fixture is provided for supporting the micromanipulation device and force generating device. The force generating device can be a micrometer. The micromanipulation device is configured for production using micro-fabrication techniques. The micromanipulation device may include a piercing element for piercing an object positioned between the arms of the device, and may further include a notch aligned with the piercing element for retaining the object.
Abstract:
An improved imprint device is disclosed. It comprises a drive component, an imprinting object, and at least one mold, stacked together within a chamber, a fluid supplier is used for providing the solvent fluid into the chamber through a pipe. The solvent fluid will permeate the imprinting object, and the imprinting object will be plasticized at the temperature lower than the glass transition temperature. The drive component is used for driving the mold to the plasticized imprinting object, so that the pattern on the mold will be imprinted on the imprinting object. It is the advantage of the present invention to reduce the process temperature, prevent the pattern distortion, and save the process time. Furthermore, by using the fluid and a barrier film as a pressing medium, the pressure can be applied to the object and the mold uniformly, such that a large area imprint can be achieved.