摘要:
Provided is a method of forming micropatterns, in which a line-and-space pattern is formed using a positive photoresist, and a spin-on-oxide (SOX) spacer is formed on two sidewalls of the line-and-space pattern and used in etching a lower layer, thereby doubling a pattern density. Accordingly, all operations may be performed in single equipment (lithography equipment) without taking a substrate out, and thus a high throughput is obtained, and concerns about pollution are very low. Moreover, as the line-and-space pattern is formed using a wet method by using a negative tone developer, line-width roughness (LWR) of the micropatterns may be improved compared to when a dry etching method is used.
摘要:
A method of manufacturing a semiconductor device using a photolithography process may include forming an anti-reflective layer and a first photoresist film on a lower surface. The first photoresist film may be exposed to light and a first photoresist pattern having a first opening may be formed by developing the first photoresist film. A plasma treatment can be performed on the first photoresist pattern and a second photoresist film may be formed on the first photoresist pattern, which may be exposed to light. A second photoresist pattern may be formed to have a second opening by developing the second photoresist film. Here, the second opening may be substantially narrower than the first opening.
摘要:
A method of manufacturing a semiconductor device using a photolithography process may include forming an anti-reflective layer and a first photoresist film on a lower surface. The first photoresist film may be exposed to light and a first photoresist pattern having a first opening may be formed by developing the first photoresist film. A plasma treatment can be performed on the first photoresist pattern and a second photoresist film may be formed on the first photoresist pattern, which may be exposed to light. A second photoresist pattern may be formed to have a second opening by developing the second photoresist film. Here, the second opening may be substantially narrower than the first opening.
摘要:
Methods of forming a pattern of a semiconductor device including performing a double patterning process without using an atomic layer deposition (ALD) oxide film are provided. The methods may include forming a mask pattern on a substrate; forming a chemical attach process (CAP) material layer covering at least a portion of the mask pattern; forming a CAP adhesive layer by adhering at least a portion of the CAP material layer to the mask pattern by using a first baking process and a first development process; forming an interlayer covering at least a portion of the mask pattern and the CAP adhesive layer; and removing the mask pattern and the interlayer while allowing the CAP adhesive layer to remain by using a second baking process and a second development process.
摘要:
Methods of forming a photoresist pattern include forming a first photoresist pattern on a substrate and treating the first photoresist pattern with plasma that modifies etching characteristics of the first photoresist pattern. This modification may include making the first photoresist pattern more susceptible to removal during subsequent processing. The plasma-treated first photoresist pattern is covered with a second photoresist layer, which is patterned into a second photoresist pattern that contacts sidewalls of the plasma-treated first photoresist pattern. The plasma-treated first photoresist pattern is selectively removed from the substrate to reveal the remaining second photoresist pattern. The second photoresist pattern is used as an etching mask during the selective etching of a portion of the substrate (e.g., target layer). The use of the second photoresist pattern as an etching mask may yield narrower linewidths in the etched portion of the substrate than are achievable using the first photoresist pattern alone.