Abstract:
A bundled flexible circuit cable with water resistant structure is provided, in which a flexible substrate forms a cluster section having a lap section. In the lap section, a plurality of flat cable components that collectively form the cluster section is arranged to stack by substantially paralleling each other and corresponding up and down and is bonded and positioned by being applied with an adhesive material. The flat cable components are enclosed by a water resistant component at the lap section, whereby water, liquids, and contaminants are prevented from moving through gaps present in the bundled flexible substrate to get into the enclosure of an electronic device so as to realize protection against water, humidity, and dust. A tubular member or a wrapping member is further provided to fit over a section of the cluster section other than the lap section in order to facilitate extension through a holed mechanism device, such as a hinge, and to improve resistance against flexing and bending. The adhesive material can be a material containing conductive particles therein. Further, the substrate of the flexible circuit cable can be of such a design that a shielding layer is included and in electrical connection with a grounding line, whereby the shielding layer enclosing each of the lapped flat cable components in the water resistant structure is electrically connected to the water resistant component containing a conductive substance or the device enclosure to realize protection against electromagnetic interference.
Abstract:
A bundled flexible flat circuit cable includes a flexible substrate that forms at least one cluster section having an end forming at least one first connection section and an opposite end forming at least one second connection section. Both the first and second connection sections or one of the first and second connection sections form a stack structure. The flexible substrate can be of a structure of single-sided or double-sided substrate and may additionally include an electromagnetic shielding layer. A bundling structure is provided to bundle the cluster section at a predetermined location to form a bundled structure. The bundling structure can be made of a shielding material, an insulation material, or a combination of shielding material and insulation material.
Abstract:
Disclosed is a structure of electromagnetic wave resistant connector for flexible flat cable. A flexible flat cable defines an insertion device mounting section to which an insertion device is mounted. The insertion device includes a metal member that is at least partly formed of a metal material. The flexible flat cable forms thereon conductive traces on which an insulation layer is provided. The insulation layer has a surface, which forms, in at least a portion thereof, a conductive shielding layer. The conductive shielding layer extends to the insertion device mounting section, so that when the insertion device is mounted to the insertion device mounting section, electrical connection is formed between the metal member of the insertion device and the conductive shielding layer.
Abstract:
Provided is a flexible-circuit-board cable having a positioning structure. A connection zone is defined in a free end of the flexible-circuit-board cable and is provided with a plurality of conductive contacts. The connection zone has a first surface on which at least one projection section is formed and a second surface. A shielding layer overlaps the projection section and a portion of the first surface. The second surface of the connection zone is also bonded to a shielding layer. When the connection zone of the flexible-circuit-board cable is inserted into an insertion space defined in a connector, the first and second local zones of the connection zone formed by the shielding layers and the projection section are put into engagement with and thus positioned and retained by walls on opposite sides of the insertion space of the connector to thereby fix within the connector.
Abstract:
A bundled flexible circuit cable with water resistant structure is provided, in which a flexible substrate forms a cluster section having a lap section. In the lap section, a plurality of flat cable components that collectively form the cluster section is arranged to stack by substantially paralleling each other and corresponding up and down and is bonded and positioned by being applied with an adhesive material. The flat cable components are enclosed by a water resistant component at the lap section, whereby water, liquids, and contaminants are prevented from moving through gaps present in the bundled flexible substrate to get into the enclosure of an electronic device so as to realize protection against water, humidity, and dust. A tubular member or a wrapping member is further provided to fit over a section of the cluster section other than the lap section in order to facilitate extension through a holed mechanism device, such as a hinge, and to improve resistance against flexing and bending. The adhesive material can be a material containing conductive particles therein. Further, the substrate of the flexible circuit cable can be of such a design that a shielding layer is included and in electrical connection with a grounding line, whereby the shielding layer enclosing each of the lapped flat cable components in the water resistant structure is electrically connected to the water resistant component containing a conductive substance or the device enclosure to realize protection against electromagnetic interference.
Abstract:
A cable bundling device includes a cable positioning and a wrapping mechanism. The cable positioning mechanism includes a first clamping member and a second clamping member, which are set in a working zone. The first and second clamping members function to respectively clamp ends of a cable. One of the wrapping mechanism and the cable positioning mechanism is selectively rotatable to have the bundling material loaded in the wrapping mechanism wrapped around the cable.
Abstract:
Provided is a circuit board based connector with raised projection section, which is formed by applying substrate bonding and formation techniques to make a connector that features a raised projection section. The circuit substrate has an end that is provided with conductive terminals and an opposite end that is provided with flat cable connection terminals for connection with a flat cable. The circuit substrate has a first surface on which the projection section is formed. A shielding layer covers the projection section and a portion of the first surface. The circuit substrate has a second surface on which a second shielding layer is selectively formed. When the circuit substrate is inserted into an insertion space defined in a connection socket with the conductive terminals thereof, the shielding layer and the projection section of the circuit substrate are put into engagement with and thus retained by the insertion space of the connection socket to thereby fix within the connection socket.
Abstract:
Provided is a flexible-circuit-board cable having a positioning structure. A connection zone is defined in a free end of the flexible-circuit-board cable and is provided with a plurality of conductive contacts. The connection zone has a first surface on which at least one projection section is formed and a second surface. A shielding layer overlaps the projection section and a portion of the first surface. The second surface of the connection zone is also bonded to a shielding layer. When the connection zone of the flexible-circuit-board cable is inserted into an insertion space defined in a connector, the first and second local zones of the connection zone formed by the shielding layers and the projection section are put into engagement with and thus positioned and retained by walls on opposite sides of the insertion space of the connector to thereby fix within the connector.
Abstract:
Disclosed is a flat signal transmission cable with bundling structure, including at least one flexible circuit. The flexible circuit includes a plurality of clustered flat cable components that are formed by slitting in a direction parallel to extension direction of the flexible circuit to impose free and independent flexibility for bending to each clustered flat cable component. At least one bundling structure is formed on a lateral side edge of a predetermined clustered flat cable component of the cluster section of the flexible circuit. The bundling structure forms a fastening section. When the clustered flat cable components of the cluster section of the flexible circuit are stacked to form a bundled structure, the bundling structure bundles the plurality of clustered flat cable components and is secured by being fastened by the fastening section.
Abstract:
A signal transmission cable adapted to pass through a hinge assembly includes a flexible circuit substrate; a first connection section formed at a first end of the flexible circuit substrate and having a plurality of signal transmission lines provided thereon; a second connection section formed at a second end of the flexible circuit substrate and having a plurality of signal transmission lines provided thereon; and a cluster section formed on the flexible circuit substrate between the first and the second connection section, and having a plurality of signal transmission lines provided thereon to connect at two ends to the signal transmission lines on the first and the second connection section, respectively. The cluster section includes a plurality of clustered flat cables, which are formed by cutting the flexible circuit substrate along a plurality of paralleled cutting lines extended in the lengthwise direction of the flexible circuit substrate.