摘要:
Uncured thermosetting resins are loaded with relatively high amounts of solid thermoplastic resin particles to form a resin precursor. The resin precursor is heat treated so as to produce an uncured resin composition wherein the thermoplastic resin particles become substantially dissolved in the thermosetting resin without causing cure of the resin mixture. Heat treatment of highly loaded thermosetting resins in accordance with the present invention provides uncured resin compositions that are well suited for use in fabricating composite structures and particularly prepreg for use in lightning protection surface coatings.
摘要:
A core crush resistant prepreg for use in making a fiber reinforced composite panel structure is provided. The prepreg comprises a woven fabric consisting essentially of carbon fiber tow strands impregnated with a hardenable polymeric resin composition. Typically the fabric has an areal weight of from about 180 to about 205 grams per square meter. The prepreg has an average fiber tow aspect ratio of less than about 15.4, a prepreg thickness of at least about 0.245 mm, and a prepreg openness of at least about 1.2 percent but less than about 6.0 percent. Preferably, the resin composition is predominantly viscous in nature and has a tan &dgr; value of between 0.9 and 2.0 at an elevated temperature between 70° C. and 140° C., and an average epoxy functionality of greater than 2.0. A method for evaluating core crush resistance properties of a prepreg is also provided. The method includes determining a fiber tow average aspect ratio of the prepreg, determining a prepreg thickness, and comparing said average fiber tow aspect ratio and prepreg thickness to a set of predetermined values.
摘要:
Uncured thermosetting resins are loaded with relatively high amounts of solid thermoplastic resin particles to form a resin precursor. The resin precursor is heat treated so as to produce an uncured resin composition wherein the thermoplastic resin particles become substantially dissolved in the thermosetting resin without causing cure of the resin mixture. Heat treatment of highly loaded thermosetting resins in accordance with the present invention provides uncured resin compositions that are well suited for use in fabricating composite structures and particularly prepreg for use in lightning protection surface coatings.
摘要:
A core crush resistant prepreg for use in making a fiber reinforced composite panel structure is provided. The prepreg comprises a woven fabric consisting essentially of carbon fiber tow strands impregnated with a hardenable polymeric resin composition. Typically the fabric has an areal weight of from about 180 to about 205 grams per square meter. The prepreg has an average fiber tow aspect ratio of less than about 15.4, a prepreg thickness of at least about 0.245 mm, and a prepreg openness of at least about 1.2 percent but less than about 6.0 percent. Preferably, the resin composition is predominantly viscous in nature and has a tan &dgr; value of between 0.9 and 2.0 at an elevated temperature between 70° C. and 140° C., and an average epoxy functionality of greater than 2.0. A method for evaluating core crush resistance properties of a prepreg is also provided. The method includes determining a fiber tow average aspect ratio of the prepreg, determining a prepreg thickness, and comparing said average fiber tow aspect ratio and prepreg thickness to a set of predetermined values.
摘要:
A core crush resistant prepreg for use in making a fiber reinforced composite panel structure is provided. The prepreg comprises a woven fabric consisting essentially of carbon fiber tow strands impregnated with a hardenable polymeric resin composition. Typically the fabric has an areal weight of from about 180 to about 205 grams per square meter. The prepreg has an average fiber tow aspect ratio of less than about 15.4, a prepreg thickness of at least about 0.245 mm, and a prepreg openness of at least about 1.2 percent but less than about 6.0 percent. Preferably, the resin composition is predominantly viscous in nature and has a tan &dgr; value of between 0.9 and 2.0 at an elevated temperature between 70° C. and 140° C., and an average epoxy functionality of greater than 2.0. A method for evaluating core crush resistance properties of a prepreg is also provided. The method includes determining a fiber tow average aspect ratio of the prepreg, determining a prepreg thickness, and comparing said average fiber tow aspect ratio and prepreg thickness to a set of predetermined values.