摘要:
Controlling electromagnetic (‘EM’) radiation in a data center having a number EM sections, including: receiving, by an EM controller, a specification of preferred EM radiation characteristics for the data center; and setting, by the EM controller, a state of each EM section in accordance with the specification, where the state of each EM section may be one of: an absorption state in which the EM section absorbs EM radiation or a reflection state in which the EM section reflects EM radiation.
摘要:
Methods, systems, and products are disclosed for enabling memory module slots in a computing system after a repair action, the computing system having a plurality of memory module slots and having at least one memory module installed in one of the memory module slots, that includes: determining, during a boot process for the computing system, whether any of the memory module slots are disabled; and if any of the memory module slots are disabled: retrieving, for each memory module installed in one of the memory module slots, a memory module identifier for that memory module, retrieving, from non-volatile memory of the computing system, previously stored memory module identifiers, determining whether the retrieved memory module identifiers match the previously stored memory module identifiers, and enabling the disabled memory module slots if the retrieved memory module identifiers do not match the previously stored memory module identifiers.
摘要:
Controlling electromagnetic (‘EM’) radiation in a data center having a number EM sections, including: receiving, by an EM controller, a specification of preferred EM radiation characteristics for the data center; and setting, by the EM controller, a state of each EM section in accordance with the specification, where the state of each EM section may be one of: an absorption state in which the EM section absorbs EM radiation or a reflection state in which the EM section reflects EM radiation.
摘要:
Controlling electromagnetic (‘EM’) radiation in a data center having a number EM sections, including: receiving, by an EM controller, a specification of preferred EM radiation characteristics for the data center; and setting, by the EM controller, a state of each EM section in accordance with the specification, where the state of each EM section may be one of: an absorption state in which the EM section absorbs EM radiation or a reflection state in which the EM section reflects EM radiation.
摘要:
One embodiment provides a method for scalable predictive failure analysis. Embodiments of the method may include gathering memory information for memory on a user computer system having at least one processor. Further, the method includes selecting one or more memory-related parameters. Further still, the method includes calculating based on the gathering and the selecting, a single bit error value for the scalable predictive failure analysis through calculations for each of the one or more memory-related parameters that utilize the memory information. Yet further, the method includes setting, based on the calculating, the single bit error value for the user computer system.
摘要:
The present invention is directed to the detection of faulty CPU heat sink coupling during system power-up. A method in accordance with an embodiment of the present invention includes: monitoring a slope of a CPU temperature rise from initial system power-up; determining if the slope of the CPU temperature rise exceeds an expected value; and in the case that the slope of the CPU temperature rise exceeds the expected value, indicating an existence of a possible fault (PFA) related to a heat sink coupled to the CPU.
摘要:
Methods, apparatus, and products are disclosed for preemptive thermal management for a computing system based on cache performance, the computing system having a processor, cached computer memory operatively coupled to the processor, and a processor cache operatively coupled to the processor, the processor cache capable of storing a subset of memory contents of the cached computer memory, that include: attempting, by the processor, to retrieve portions of the memory contents of the cached computer memory from the processor cache, resulting in cache misses for the processor cache; tracking, by the processor, cache miss statistics for the processor cache in the computing system, the cache miss statistics describing the cache misses for the processor cache; and administering a thermal management device for the computing system in dependence upon the cache miss statistics, the thermal management device operatively coupled to the processor and capable of managing temperature for the computing system.
摘要:
A method and system are disclosed to enable and control power reduction in a blade/chassis system. A “maximum power reduction” attribute is stored in the VPD of the blade (or can otherwise be input to or retrieved or calculated by the management entity). The management module of the chassis in which the blades and power supplies are located uses this information to manage the power reduction of blades when the system is operating in an over-subscription mode and a power supply fails. If throttling is required, the system knows the amount of power reduction available for each blade and controls the throttling by spreading it out among the blades in the system so that, ideally, no blade will cease operation altogether.
摘要:
The present invention is directed to the detection of faulty CPU heat sink coupling during system power-up. A method in accordance with an embodiment of the present invention includes: monitoring a slope of a CPU temperature rise from initial system power-up; determining if the slope of the CPU temperature rise exceeds an expected value; and in the case that the slope of the CPU temperature rise exceeds the expected value, indicating an existence of a possible fault (PFA) related to a heat sink coupled to the CPU.
摘要:
A computer system is provided that utilizes a plurality of indicator lights associated with components within the computer system. In this computer system, BIOS logic is configured to detect errors within the system and determine causes for the errors. A service processor, in communication with the BIOS logic, is configured to activate at least two indicator lights from the plurality of indicator lights to indicate possible sources for the detected errors. The service processor activates the at least two indicator lights to generate a visual pattern representative of the likelihood that a component within the computer system is the source for the detected error. The visual pattern comprises a pattern that ranges from a pattern that indicates a high likelihood of being the source for the detected error to a pattern that indicates a lower likelihood of being the source for the detected error.