摘要:
A process for fabricating a capacitor is described. A template layer including a stack of at least one first layer and at least one second layer is formed over a substrate, wherein the at least one first layer and the at least one second layer have different etching selectivities and are arranged alternately. An opening is formed through the template layer. A wet etching process is performed to recess the at least one first layer relative to the at least one second layer, at the sidewall of the opening. A bottom electrode of the capacitor is formed at the bottom of the opening and on the sidewall of the opening, and then the template layer is removed.
摘要:
A container device includes a skeleton having four vertical posts and four lower and four upper beams to be secured between end portions of the posts. Each of the posts includes a slot formed in one side and a groove in the other side of each of the end portions. A number of corner couplers each includes three extensions perpendicular to each other, for engaging into open ends of the beams and the posts. A number of insert panels are engaged into the end portions of the posts via the grooves of the posts and each includes a screw hole. A number of fasteners are engaged into the corner couplers, and threaded with the screw holes of the insert panels to secure the corner couplers and the beams and the posts together, and to form a parallelepiped container.
摘要:
A method of shallow trench isolation fill-in to create the void-free trenches is disclosed. First, a liner oxide layer is formed in the trenches. Next, the silicon substrate is pre-wetted with DI water, and the liner oxide layer is etched by a chemical solution. The chemical solution is an oxide etchant, such as HF solution or BOE (buffered oxide etchant). The etching rate close to an opening of a trench is faster than a bottom of the trench. Finally, the trenches are filled with a HDP oxide layer.
摘要:
A method of creating a trench having a portion of a bulb-shaped cross-section in silicon is disclosed. The method comprises forming at least one trench in silicon and forming a liner in the at least one trench. The liner is removed from a bottom surface of the at least one trench to expose the underlying silicon. A portion of the underlying exposed silicon is removed to form a cavity in the silicon. At least one removal cycle is conducted to remove exposed silicon in the cavity to form a bulb-shaped cross-sectional profile, with each removal cycle comprising subjecting the silicon in the cavity to ozonated water to oxidize the silicon and subjecting the oxidized silicon to a hydrogen fluoride solution to remove the oxidized silicon. A semiconductor device structure comprising the at least one trench comprising a cavity with a bulb-shaped cross-sectional profile is also disclosed.
摘要:
A capacitor array includes a plurality of capacitors and a support frame. Each capacitor includes an electrode. The support frame supports the plurality of electrodes and includes a plurality of support structures corresponding to the plurality of electrodes. Each support structure may surround the respective electrode. The support frame may include oxide of a doped oxidizable material.
摘要:
A capacitor array includes a plurality of capacitors and a support frame. Each capacitor includes an electrode. The support frame supports the plurality of electrodes and includes a plurality of support structures corresponding to the plurality of electrodes. Each support structure may surround the respective electrode. The support frame may include oxide of a doped oxidizable material.
摘要:
A method for seamless gap filling is provided, including providing a semiconductor structure with a device layer having a gap therein, wherein the gap has an aspect ratio greater than 4. A liner layer is formed over the device layer exposed by the gap. A first un-doped oxide layer is formed over the liner layer in the gap. A doped oxide layer is formed over the first undoped oxide layer in the gap. A second un-doped oxide layer is formed over the doped oxide layer in the gap to fill the gap. An annealing process is performed on the second un-doped oxide layer, the doped oxide layer, and the first un-doped oxide to form a seamless oxide layer in the gap, wherein the seamless oxide layer has an interior doped region.
摘要:
Multiple oxide layers with different thicknesses are formed on a semiconductor substrate with a silicon surface, having a first and second region. A sacrificial oxide layer is formed on the silicon surface to cover both the first region and the second region, with a mask layer formed on the surface of the sacrificial oxide layer. By defining and patterning the mask layer, a first opening and a second opening, having predetermined surface areas, are formed in portions of the first and second regions of the mask layer to expose portions of the. The sacrificial oxide layer has a surface area equal to the first predetermined surface area, and portions of the sacrificial oxide layer having a surface area equal to the second predetermined surface area. A linear nitrogen doping process is then performed to simultaneously implant nitrogen ions with a first and second predetermined concentration into the first and second region, through the first opening and the second opening, respectively. Thereafter, the mask layer and the sacrificial oxide layer are removed, respectively. An oxidation process is performed to two silicon oxide layers with different thicknesses in the first and second regions.
摘要:
A process for fabricating a capacitor is described. A template layer including a stack of at least one first layer and at least one second layer is formed over a substrate, wherein the at least one first layer and the at least one second layer have different etching selectivities and are arranged alternately. An opening is formed through the template layer. A wet etching process is performed to recess the at least one first layer relative to the at least one second layer, at the sidewall of the opening. A bottom electrode of the capacitor is formed at the bottom of the opening and on the sidewall of the opening, and then the template layer is removed.
摘要:
A method of creating a trench having a portion of a bulb-shaped cross-section in silicon is disclosed. The method comprises forming at least one trench in silicon and forming a liner in the at least one trench. The liner is removed from a bottom surface of the at least one trench to expose the underlying silicon. A portion of the underlying exposed silicon is removed to form a cavity in the silicon. At least one removal cycle is conducted to remove exposed silicon in the cavity to form a bulb-shaped cross-sectional profile, with each removal cycle comprising subjecting the silicon in the cavity to ozonated water to oxidize the silicon and subjecting the oxidized silicon to a hydrogen fluoride solution to remove the oxidized silicon. A semiconductor device structure comprising the at least one trench comprising a cavity with a bulb-shaped cross-sectional profile is also disclosed.