Abstract:
A method and apparatus are provided for growing a composite metal sulphide photcatalyst thin film, wherein photochemical deposition and chemical bath deposition are both performed for growing the composite metal sulphide thin film, such as (AgInS2)x/(ZnS)2(1-x), wherein x is 0-1.
Abstract:
A method and system for detecting an underground obstacle in which a plurality of acoustic signal sensors are deployed in a predetermined pattern on an area of ground defined by a guided drill path. A drill head of a drill is inserted into the ground and a borehole is drilled in the ground along the guided drill path. The noise signal generated by the drill head is detected at at least two of the acoustic signal sensors and the difference in arrival time of the noise signal at the two acoustic signal sensors is determined. This difference in arrival time of noise signal is analyzed, whereby the presence or absence of an underground obstacle is determined.
Abstract:
Ultrasonic imaging method and apparatus in which a reference waveform which is substantially free of echoes is modified to be equal to a weighted sum of the reference waveform and filtered signals from the transducing elements which transmit the ultrasonic waves and receive the reflected echoes. The modified waveform is then subtracted from the transducer signals to remove ringdown signals and provide a displayed image which is substantially free of ringdown artifacts.
Abstract:
A method and apparatus are provided for growing a composite metal sulphide photcatalyst thin film, wherein photochemical deposition and chemical bath deposition are both performed for growing the composite metal sulphide thin film, such as (AgInS2)x/(ZnS)2(1-x), wherein x is 0-1.
Abstract:
A method and apparatus are provided for growing a composite metal sulphide photcatalyst thin film, wherein photochemical deposition and chemical bath deposition are both performed for growing the composite metal sulphide thin film, such as (AgInS2)x/(ZnS)2(1-x), wherein x is 0-1.
Abstract:
Photo energy transformation catalysts and methods for fabricating the same are provided. The method includes mixing a solution containing a positive valence element of Group IB, a solution containing a positive valence element of Group IIIA, and a solution containing a negative valence element of Group VIA to obtain a composition and forming a film from the composition by liquid phase deposition, wherein the film contains compounds including the elements of Group IB, Group IIIA, and Group VIA.
Abstract:
Photo energy transformation catalysts and methods for fabricating the same are provided. The method includes mixing a solution containing a positive valence element of Group IB, a solution containing a positive valence element of Group IIIA, and a solution containing a negative valence element of Group VIA to obtain a composition and forming a film from the composition by liquid phase deposition, wherein the film contains compounds including the elements of Group IB, Group IIIA, and Group VIA.
Abstract:
A method and apparatus of growing a thin film are provided. The method comprises at least (a) providing a number of substrates; (b) cleaning the substrates; and (c) placing the substrates into a reaction liquid; (d) vibrating the reaction liquid by ultrasonic waves such that a thin film is grown on the substrates evenly.
Abstract:
A blood flow detection and imaging method and system is described for displaying images in accordance with signals transmitted from an intravascular ultrasound transducer probe. The image processor includes means for independently designating persistence factors for smoothing calculated speed and power of the dynamic portion of a field of view within a vasculature. Furthermore, the designation of a particular image point within a field of view as a dynamic image point (such as a blood flow region) as opposed to a static image point (such as a tissue region) is determined by averaging signal values for image points proximate to an image point of interest over both time and space.
Abstract:
A method and apparatus of growing a thin film are provided. The method comprises at least (a) providing a number of substrates; (b) cleaning the substrates; and (c) placing the substrates into a reaction liquid; (d) vibrating the reaction liquid by ultrasonic waves such that a thin film is grown on the substrates evenly.