Abstract:
Disclosed is an optical sensing device including a source unit providing a beam of light with continuously modulated phase retardation between p- and s-polarization components of the light by employing a LCM; a reference unit receiving a first part of the light to provide a reference signal; a SPR sensing unit receiving a second part of the light to induce a phase retardation change between the p- and s-polarization components due to SPR associated with a sample; a probe unit receiving the light after SPR to provide a probe signal; and a detection unit connected to the reference unit and the probe unit to detect characteristics of the sample by comparing the reference signal with the probe signal. By using active phase modulation technologies and differential phase measurement, it is possible to fulfill chemical and biological detection.
Abstract:
Disclosed is an optical sensing device, which comprises a light source emitting a light; a beam splitter; an SPR sensor unit comprising a sensing surface; and a detecting mechanism; and a converting unit converting the first beam and the second beam from the optical device into a two-dimensional interference fringe pattern. From the above-mentioned configuration, an extra phase shift of a detection beam in SPR phase measurement is obtained. The differential measurement approach has shown to achieve a sensitivity figure significantly better than the best result that can be obtained from the prior art in the field of the measurement based on an SPR sensor.
Abstract:
Disclosed is an optical sensing device including a source unit providing a beam of light with continuously modulated phase retardation between p- and s-polarization components of the light by employing a LCM; a reference unit receiving a first part of the light to provide a reference signal; a SPR sensing unit receiving a second part of the light to induce a phase retardation change between the p- and s-polarization components due to SPR associated with a sample; a probe unit receiving the light after SPR to provide a probe signal; and a detection unit connected to the reference unit and the probe unit to detect characteristics of the sample by comparing the reference signal with the probe signal. By using active phase modulation technologies and differential phase measurement, it is possible to fulfill chemical and biological detection.
Abstract:
A test apparatus includes a broadband noise source, a test station, and a spectrum analyzer. A method using the test apparatus to measure the spectral gain of an erbium doped fiber amplifier (EDFA) under test includes steps of providing an optical signal from a broadband noise source to an input of the EDFA under test, measuring a power at a test wavelength at an output of the EDFA under test, adjusting the test wavelength, and repeating the steps of measuring and adjusting for a predetermined number of times.
Abstract:
A method of increasing capacity on a long-haul undersea cable system having at least one optical fiber, said method comprising interleaving counter-propagating forward-propagating and backward-propagating signals in forward and backward channels on a common optical fiber, wherein the wavelength offset between said forward and backward channels is typically half of the channel spacing of co-propagating signals.
Abstract:
Disclosed is an optical sensing device including a source unit providing a beam of light with continuously modulated phase retardation between p- and s-polarization components of the light by employing a LCM; a reference unit receiving a first part of the light to provide a reference signal; a SPR sensing unit receiving a second part of the light to induce a phase retardation change between the p- and s-polarization components due to SPR associated with a sample; a probe unit receiving the light after SPR to provide a probe signal; and a detection unit connected to the reference unit and the probe unit to detect characteristics of the sample by comparing the reference signal with the probe signal. By using active phase modulation technologies and differential phase measurement, it is possible to fulfill chemical and biological detection.
Abstract:
Disclosed is an optical sensing device, which comprises a light source emitting a light; a beam splitter; an SPR sensor unit comprising a sensing surface; and a detecting mechanism; and a converting unit converting the first beam and the second beam from the optical device into a two-dimensional interference fringe pattern. From the above-mentioned configuration, an extra phase shift of a detection beam in SPR phase measurement is obtained. The differential measurement approach has shown to achieve a sensitivity figure significantly better than the best result that can be obtained from the prior art in the field of the measurement based on an SPR sensor.
Abstract:
A dispersion compensator provides dispersion compensation to a WDM optical signal having a plurality of channels located at different wavelengths and traveling in an optical transmission path. The dispersion compensator includes an optical splitter adapted to receive the WDM optical signal. The optical splitter has first and second output ports such that a subset of the plurality of channels are directed along the first output port and remaining ones of the plurality of channels are directed along the second output port. A dispersion compensating element is coupled to the first output port and a multiplexing element having a first input port is coupled to second output port of the optical splitter. The multiplexing element also has a second input port coupled to the dispersion compensating element and an output port on which the subset of channels and the remaining ones of the channels are recombined.
Abstract:
Single longitudinal mode operation is achieved and maintained under CW and high speed (Gbps) current modulation conditions by a short coupled cavity laser including a short cavity semiconductor laser having two parallel mirror facets and a reflective surface spaced apart from and in predetermined relationship with one of the mirror facets. A short external cavity resonator is formed between the one mirror facet and the reflective surface. In general, the laser cavity length is related to the external cavity resonator length by the equation, nL=md, where nL is the effective optical length of the injection laser, d is the length of the external cavity resonator, and m is a positive number preferably between 2 and 10.
Abstract:
The optically pumped submillimeter wave lasers employing molecular gases having dipole moments are improved by employing as a polyatomic buffer gas a molecular gas or vapor of a hydrocarbon having a significantly large vibrational heat capacity in relation to its molecular weight. An example is C.sub.6 H.sub.14 added to such lasers as the methyl fluoride laser at 496 micrometers. Other examples of saturated hydrocarbon buffers are also given; and in each case the vapor molecule is complex enough to absorb many vibrational quanta from the active molecules, yet is small enough to move rapidly to the tube walls.