Abstract:
A process for fabricating a CMOS structure using a single masking step to define lightly-doped source and drain regions for both N- and P-channel devices. The process forms disposable spacers adjacent to gate structures and at least one retrograde well. Retrograde wells are formed using one or more charged ions at different energy levels. In addition, heavily-doped source and drain regions are formed using blanket implants of two different conductivities into a semiconductor substrate having two contiguous wells of opposite conductivity type. By blanket implanting a first dopant into both wells, and then selectively implanting a second dopant, the diffusion of the second dopant is partially suppressed by the first dopant. The partial suppression of first dopant results in shallow implants being formed. Also disclosed is a process for forming contact openings and contact implants.
Abstract:
A process for fabricating a CMOS structure using a single masking step to define lightly-doped source and drain regions for both N- and P-channel devices. The process forms disposable spacers adjacent to gate structures and at least one retrograde well. Retrograde wells are formed using one or more charged ions at different energy levels. In addition, heavily-doped source and drain regions are formed using blanket implants of two different conductivities into a semiconductor substrate having two contiguous wells of opposite conductivity type. By blanket implanting a first dopant into both wells, and then selectively implanting a second dopant, the diffusion of the second dopant is partially suppressed by the first dopant. The partial suppression of first dopant results in shallow implants being formed. Also disclosed is a process for forming contact openings and contact implants.
Abstract:
A method of texturing a metal provides a metal with a thickness of 50 to 400 μm. The metal is anodized, etched and then textured in a first texturing step to produce a first textured surface of the metal. A textured metal is produced with a dimpled surface of dimples with diameters of 5 nm to 2 and a depth of from 2 nm to 2 μm.
Abstract:
A nonvolatile memory cell includes first and second MOS transistors, such as a PMOS transistor and NMOS transistor in a CMOS cell. One of the two transistors provides a floating gate for storing data while the other transistor is provided with a control gate for selecting the memory cell, and is connected with a bit line for reading data stored in the cell. The nonvolatile memory cell may be integrated into a logic device, such as a CMOS gate array, using PMOS and NMOS transistor cells formed in the gate array. In that case, the nonvolatile memory cell may be fabricated in a logic device with the standard processes used to produce the logic device.
Abstract:
A nonvolatile memory cell includes first and second MOS transistors, such as a PMOS transistor and NMOS transistor in a CMOS cell. One of the two transistors provides a floating gate for storing data while the other transistor is provided with a control gate for selecting the memory cell, and is connected with a bit line for reading data stored in the cell. The nonvolatile memory cell may be integrated into a logic device, such as a CMOS gate array, using PMOS and NMOS transistor cells formed in the gate array. In that case, the nonvolatile memory cell may be fabricated in a logic device with the standard processes used to produce the logic device.
Abstract:
A dynamic random access memory (DRAM) cell includes first and second MOS transistors, such as a PMOS transistor and NMOS transistor in a CMOS cell. One of the two transistors functions as a switch transistor while the other transistor is configured as a storage capacitor. The DRAM cell may be integrated into a logic device, such as a CMOS gate array, using PMOS and NMOS transistor cells formed in the gate array. In that case, the DRAM cell may be fabricated in a logic device with the standard processes used to produce the logic device.
Abstract:
A process for manufacturing a BiCMOS integrated circuit is implemented by adapting the masking and doping steps used in forming CMOS devices. Thus simultaneous formation of both CMOS and bipolar device structures eliminates the need for any additional masking or process steps to form bipolar device structures. Collector regions 20 of NPN transistors are formed simultaneously with N-wells 18. Collector regions of PNP transistors, if required, are formed simultaneously with P-wells 16. Base regions 24 of the bipolar transistors are formed using threshold voltage implant steps and/or lightly doped drain implant steps of PMOS transistors. Emitter regions 59 are formed, when using a single polysilicon CMOS process, simultaneously with the CMOS gates 72, 74. When employing a double polysilicon CMOS process, the emitter regions 59 are formed concurrently with the second polysilicon layer interconnect structure and/or source/drain regions 50,52 of NMOS transistors. For single polysilicon CMOS process, the buried layer regions 66 are formed during buried contact formation.
Abstract:
A CMOS Structure is disclosed wherein two adjacent transistors of opposite conductivity each have a gate above their respective channel regions. Spacers are absent from the gate of one of the transistors. The structure is also characterized by lightly doped regions.
Abstract:
A method and structure for controlling the threshold voltage of a MOSFET is provided. The method compensates for the edge effect associated with prior art halo implants by providing an edge threshold voltage implant (the VT implant) which passes impurities through dielectric spacers, through the underlying source/drain regions and into the edges of the halo regions which lie in the channel. The VT implant reduces junction capacitance and does not degrade punchthrough voltage.