Abstract:
A process is provided of introducing an RNA into a living cell to inhibit gene expression of a target gene in that cell. The process may be practiced ex vivo or in vivo. The RNA has a region with double-stranded structure. Inhibition is sequence-specific in that the nucleotide sequences of the duplex region of the RNA and of a portion of the target gene are identical. The present invention is distinguished from prior art interference in gene expression by antisense or triple-strand methods.
Abstract:
A process is provided of introducing an RNA into a living cell to inhibit gene expression of a target gene in that cell. The process may be practiced ex vivo or in vivo. The RNA has a region with double-stranded structure. Inhibition is sequence-specific in that the nucleotide sequences of the duplex region of the RNA and of a portion of the target gene are identical. The present invention is distinguished from prior art interference in gene expression by antisense or triple-strand methods.
Abstract:
The invention provides engineered RNA precursors that when expressed in a cell are processed by the cell to produce targeted small interfering RNAs (siRNAs) that selectively silence targeted genes (by cleaving specific mRNAs) using the cell's own RNA interference (RNAi) pathway. By introducing nucleic acid molecules that encode these engineered RNA precursors into cells in vivo with appropriate regulatory sequences, expression of the engineered RNA precursors can be selectively controlled both temporally and spatially, i.e., at particular times and/or in particular tissues, organs, or cells.
Abstract:
A process is provided of introducing an RNA into a living cell to inhibit gene expression of a target gene in that cell. The process may be practiced ex vivo or in vivo. The RNA has a region with double-stranded structure. Inhibition is sequence-specific in that the nucleotide sequences of the duplex region of the RNA and of a portion of the target gene are identical. The present invention is distinguished from prior art interference in gene expression by antisense or triple-strand methods.
Abstract:
A process is provided of introducing an RNA into a living cell to inhibit gene expression of a target gene in that cell. The process may be practiced ex vivo or in vivo. The RNA has a region with double-stranded structure. Inhibition is sequence-specific in that the nucleotide sequences of the duplex region of the RNA and of a portion of the target gene are identical. The present invention is distinguished from prior art interference in gene expression by antisense or triple-strand methods.
Abstract:
Genes involved in double-stranded RNA interference (RNAi pathway genes) are identified and used to investigate the RNAi pathway. The genes and their products are also useful for modulating RNAi pathway activity.
Abstract:
A process is provided of introducing an RNA into a living cell to inhibit gene expression of a target gene in that cell. The process may be practiced ex vivo or in vivo. The RNA has a region with double-stranded structure. Inhibition is sequence-specific in that the nucleotide sequences of the duplex region of the RNA and of a portion of the target gene are identical. The present invention is distinguished from prior art interference in gene expression by antisense or triple-strand methods.
Abstract:
The invention provides engineered RNA precursors that when expressed in a cell are processed by the cell to produce targeted small interfering RNAs (siRNAs) that selectively silence targeted genes (by cleaving specific mRNAs) using the cell's own RNA interference (RNAi) pathway. By introducing nucleic acid molecules that encode these engineered RNA precursors into cells in vivo with appropriate regulatory sequences, expression of the engineered RNA precursors can be selectively controlled both temporally and spatially, i.e., at particular times and/or in particular tissues, organs, or cells.
Abstract:
The invention provides engineered RNA precursors that when expressed in a cell are processed by the cell to produce targeted small interfering RNAs (siRNAs) that selectively silence targeted genes (by cleaving specific mRNAs) using the cell's own RNA interference (RNAi) pathway. By introducing nucleic acid molecules that encode these engineered RNA precursors into cells in vivo with appropriate regulatory sequences, expression of the engineered RNA precursors can be selectively controlled both temporally and spatially, i.e., at particular times and/or in particular tissues, organs, or cells.
Abstract:
A process is provided of introducing an RNA into a living cell to inhibit gene expression of a target gene in that cell. The process may be practiced ex vivo or in vivo. The RNA has a region with double-stranded structure. Inhibition is sequence-specific in that the nucleotide sequences of the duplex region of the RNA and of a portion of the target gene are identical. The present invention is distinguished from prior art interference in gene expression by antisense or triple-strand methods.