Abstract:
The present invention relates to methods for the individual immobilization of one or more cells under fluid flow conditions, in the context of a bioassay, comprising for each cell the step of trapping said cell in a reticular structure that is arranged in a microfluidic channel of a microfluidic device in a direction that is perpendicular to the direction of fluid flow. Further, the present invention relates to respective bioassays comprising the step of individually immobilizing one or more cells under fluid flow conditions according to said methods, e.g. assays for determining the kinetics of the binding of a ligand to the immobilized cells. Furthermore, the present invention relates to respective microfluidic devices.
Abstract:
The present invention relates to a method for detecting and/or characterizing molecular interactions between two molecules, in particular two proteins and most particular between an antigen and an antibody by using an immobilized single-stranded nucleic acid molecule to which single-stranded nucleic acid molecules having a ligand attached thereto are hybridized.
Abstract:
A method for characterizing the interaction between a protein and a small molecule by detecting a change in fluorescence emitted by a fluorescent dye and a nucleic acid structure which can be used in said method.
Abstract:
The present invention relates to a method for detecting and/or characterizing molecular interactions between two molecules, in particular two proteins and most particular between an antigen and an antibody by using an immobilized single-stranded nucleic acid molecule to which single-stranded nucleic acid molecules having a ligand attached thereto are hybridized.
Abstract:
The present invention relates to a method of identifying a nucleotide at a defined position and determining the sequence of a target polynucleotide using an electro-switchable biosensor, as well as devices comprising an electro-switchable biosensor and uses thereof.
Abstract:
Arrangements are described for evaluating characteristics of target molecules. A biochip is received which includes a substrate to which charged probe molecules are attached. The probe molecules have a marker to allow generating signals indicative of the distance of a portion of the probe molecule from the substrate. The signals are detected and means for an external electric field is generated to which the probe molecules are exposed. A control means acts to: (A) apply an external electric field causing the portion of the probe molecule to approach the substrate, and (B) apply an external electric field causing the portion of the probe molecule to move away from the substrate. The signal is recorded as a function of time during step (A) and/or step (B). Steps (A) and (B) are repeated for a predetermined number of times and the recorded signals are combined.
Abstract:
The present invention is directed to sequencing of nucleic acids. A method is provided for sequencing based on immobilized nucleic acid on a surface. Advantageously, a long range detection mechanism is used for detecting, whether a nucleotide provided to the substrate of a biochip has been incorporated into the immobilized template nucleic acid. Various different alignment means are provided by the present invention which can be used for facilitating a rigidly locking of the orientation of the DNA complex, which complex comprises the template nucleic acid, the primer and the capture nucleic acid. Various different linker systems may be used to immobilize the DNA complex at a first and a second strand end, such that the desired alignment of the DNA complex is achieved. Also co-adsorbed molecules on the substrate surface can be used for such an aligning measure. Additionally, or alternatively, an electrical field may be applied for repelling the DNA complex from the electrode and for facilitating a vertical DNA complex orientation. Advantageously, label-free nucleotides can be used, if desired.
Abstract:
The present invention is directed to sequencing of nucleic acids. A method is provided for sequencing based on immobilized nucleic acid on a surface. Advantageously, a long range detection mechanism is used for detecting, whether a nucleotide provided to the substrate of a biochip has been incorporated into the immobilized template nucleic acid. Various different alignment means are provided by the present invention which can be used for facilitating a rigidly locking of the orientation of the DNA complex, which complex comprises the template nucleic acid, the primer and the capture nucleic acid. Various different linker systems may be used to immobilize the DNA complex at a first and a second strand end, such that the desired alignment of the DNA complex is achieved. Also co-adsorbed molecules on the substrate surface can be used for such an aligning measure. Additionally, or alternatively, an electrical field may be applied for repelling the DNA complex from the electrode and for facilitating a vertical DNA complex orientation. Advantageously, label-free nucleotides can be used, if desired.
Abstract:
The present invention relates to a method of identifying a nucleotide at a defined position and determining the sequence of a target polynucleotide using an electro-switchable biosensor, as well as devices comprising an electro-switchable biosensor and uses thereof.
Abstract:
Arrangements are described for evaluating characteristics of target molecules. A biochip is received which includes a substrate to which charged probe molecules are attached. The probe molecules have a marker to allow generating signals indicative of the distance of a portion of the probe molecule from the substrate. The signals are detected and means for an external electric field is generated to which the probe molecules are exposed. A control means acts to: (A) apply an external electric field causing the portion of the probe molecule to approach the substrate, and (B) apply an external electric field causing the portion of the probe molecule to move away from the substrate. The signal is recorded as a function of time during step (A) and/or step (B). Steps (A) and (B) are repeated for a predetermined number of times and the recorded signals are combined.