摘要:
A process is provided for improving combustion control and fuel efficiency in rotary and reciprocating IC engines by enabling leaner combustion at higher compression ratios using less heat for ignition. Embodiments employ secondary chambers of minimal total volume within a cylinder periphery. These chambers communicate with a main chamber via conduits and enable a radical ignition (“RI”) species generation and supply process that starts in earlier cycles to be augmented and used in later cycles. Measures regulate the RI species generated and provided to the main chamber. These species alter dominant chain-initiation reactions of the combustion ignition mechanism. Also employed when preferable are fluids of higher heat of vaporization and volatility but lower ignitability than the fuel. This process improves combustion in radical ignition engines and radical augmented spark and compression ignition engines.
摘要:
A process for enhancement of combustion control in rotary and reciprocating IC engines for improving fuel efficiency by enabling leaner combustion at higher compression ratios. Embodiments supporting this process employ a fluid of higher heat of vaporization and higher volatility but lower ignitability than the fuel to increase the compression ratio required for self ignition. These have secondary chambers in a cylinder periphery for radical ignition (“RI”) species generation in an earlier cycle for use in a later cycle. These chambers communicate with a main chamber via conduits. Measures regulate the RI species generated and provided to the main chamber. These species then alter the dominant chain-initiation reactions of the main combustion ignition mechanism by lowering the heat and the fuel ratios required for combustion. This improves combustion in radical ignition engines and radical augmented spark and compression ignition engines.
摘要:
A process is provided for improving combustion control and fuel efficiency in rotary and reciprocating IC engines by enabling leaner combustion at higher compression ratios using less heat for ignition. Embodiments employ secondary chambers of minimal total volume within a cylinder periphery. These chambers communicate with a main chamber via conduits and enable a radical ignition (“RI”) species generation and supply process that starts in earlier cycles to be augmented and used in later cycles. Measures regulate the RI species generated and provided to the main chamber. These species alter dominant chain-initiation reactions of the combustion ignition mechanism. Also employed when preferable are fluids of higher heat of vaporization and volatility but lower ignitability than the fuel. This process improves combustion in radical ignition engines and radical augmented spark and compression ignition engines.
摘要:
A process for enhancement of combustion control in rotary and reciprocating IC engines for improving fuel efficiency by enabling leaner combustion at higher compression ratios. Embodiments supporting this process employ a fluid of higher heat of vaporization and higher volatility but lower ignitability than the fuel to increase the compression ratio required for self ignition. These have secondary chambers in a cylinder periphery for radical ignition (“RI”) species generation in an earlier cycle for use in a later cycle. These chambers communicate with a main chamber via conduits. Measures regulate the RI species generated and provided to the main chamber. These species then alter the dominant chain-initiation reactions of the main combustion ignition mechanism by lowering the heat and the fuel ratios required for combustion. This improves combustion in radical ignition engines and radical augmented spark and compression ignition engines.
摘要:
A process is provided for improving combustion control and fuel efficiency in rotary and reciprocating IC engines by enabling leaner combustion at higher compression ratios using less heat for ignition. Embodiments employ secondary chambers of minimal total volume within a cylinder periphery. These chambers communicate with a main chamber via conduits and enable a radical ignition (“RI”) species generation and supply process that starts in earlier cycles to be augmented and used in later cycles. Measures regulate the RI species generated and provided to the main chamber. These species alter dominant chain-initiation reactions of the combustion ignition mechanism. Also employed when preferable are fluids of higher heat of vaporization and volatility but lower ignitability than the fuel. This process improves combustion in radical ignition engines and radical augmented spark and compression ignition engines.
摘要:
A process is provided for improving combustion control and fuel efficiency in rotary and reciprocating IC engines by enabling leaner combustion at higher compression ratios using less heat for ignition. Embodiments employ secondary chambers of minimal total volume within a cylinder periphery. These chambers communicate with a main chamber via conduits and enable a radical ignition (“RI”) species generation and supply process that starts in earlier cycles to be augmented and used in later cycles. Measures regulate the RI species generated and provided to the main chamber. These species alter dominant chain-initiation reactions of the combustion ignition mechanism. Also employed when preferable are fluids of higher heat of vaporization and volatility but lower ignitability than the fuel. This process improves combustion in radical ignition engines and radical augmented spark and compression ignition engines.
摘要:
A process is provided for enhancing homogeneous combustion and improving ignition in rotary and reciprocating piston IC engines. Physical embodiments supporting this process have secondary chambers embedded in the cylinder periphery to initiate radical ignition (“RI”) species generation in an earlier cycle for use in the main chamber combustion of a later cycle. These communicate with the main chamber via small conduits. Coordinated with the progressions facilitated by these secondary chambers are novel control measures for regulating the quantities of RI species ultimately generated for and conveyed to the later cycle. The pre-determinable presence of RI species so supplied then alters or adds controlled variety to the dominant chain-initiation reactions of the main combustion ignition mechanism of the later cycle. This presence does so by lowering both the heat and the fuel ratios required for starting and sustaining combustion. While this presence dominates in RI mode embodiments, this presence can also assist ignition and combustion in embodiments that are instead dominated by the spark ignition (“SI”) and compression ignition (“CI”) modes. The process results in improved combustion with increased efficiencies, decreased emissions and a wider range of fuel tolerances.
摘要:
A process is provided for enhancing homogeneous combustion and improving ignition in rotary and reciprocating piston IC engines. Physical embodiments supporting this process have secondary chambers embedded in the cylinder periphery to initiate radical ignition (“RI”) species generation in an earlier cycle for use in the main chamber combustion of a later cycle. These communicate with the main chamber via small conduits. Coordinated with the progressions facilitated by these secondary chambers are novel control measures for regulating the quantities of RI species ultimately generated for and conveyed to the later cycle. The pre-determinable presence of RI species so supplied then alters or adds controlled variety to the dominant chain-initiation reactions of the main combustion ignition mechanism of the later cycle. This presence does so by lowering both the heat and the fuel ratios required for starting and sustaining combustion. While this presence dominates in RI mode embodiments, this presence can also assist ignition and combustion in embodiments that are instead dominated by the spark ignition (“SI”) and compression ignition (“CI”) modes. The process results in improved combustion with increased efficiencies, decreased emissions and a wider range of fuel tolerances.