Abstract:
An attachment system for attaching an intravascular device to a vessel wall of a body vessel is disclosed. The attachment system includes a tubular expandable body defining a lumen therethrough. The tubular expandable body is configured to move between an expanded state to contact the body vessel and a collapsed state for delivery or retrieval. The tubular expandable body is configured to contact the vessel wall along the length of the tubular expandable body in the expanded state when deployed in the body vessel. An intravascular device is held to the exterior side of the tubular expandable body and is configured to contact the vessel wall when the tubular expandable body is in the expanded state and the system is deployed within a body vessel.
Abstract:
This invention relates to medical devices and an angiotensin II type 2 (AT2) receptor antagonist compound, the medical device being adapted to release the AT2 receptor antagonist compound within a body of a patient. This invention also relates to medical devices and methods of treatment of disease, such as aneurysms and aortic dissection. Medical devices may include coated stents, grafts, stent grafts, balloons and catheters.
Abstract:
A stent graft introducer actuation assembly (1) having a fixed handle (3) and at least one sliding handle (5, 7), the sliding handle or handles telescoping within the fixed handle, and a winch arrangement (9) to retract the sliding handle into the fixed handle. There may be provided arrangements to give a mechanical advantage to the winch arrangement.
Abstract:
A stent includes a radially expandable tubular structure having a first end, a second end, and a primary strut arrangement extending over substantially an entire length thereof. The primary strut arrangement includes a plurality of rows of struts. The struts are interconnected within each row in a sinusoidal arrangement about a circumference of the tubular structure. Crests and troughs in the sinusoidal arrangement include connection points of the struts. A plurality of longitudinal struts connect neighboring rows of struts at the connection points. In each row, four circumferentially adjacent struts are disposed between every two longitudinal struts joined to the row. One of the two longitudinal struts extends in a direction of the first end to a first neighboring row, and the other of the two longitudinal struts extends in a direction of the second end to a second neighboring row.
Abstract:
A motorized delivery system and method for deploying an endoluminal prosthesis is disclosed. The system comprises a delivery device and an electrical drive system. The prosthesis is disposed between an inner dilator and an elongate sheath. To deploy the prosthesis, the electrical drive system is actuated. One or more gear-pulley arrangements rotate to cause retraction of the sheath in relation to the inner dilator.
Abstract:
A device for delivering and deploying a prosthesis is described and comprises an elongate sheath having a sheath lumen and a delivery catheter slidably disposed within the sheath lumen. A deployment assist mechanism may be coupled to the delivery catheter and the sheath and configured to apply a retraction force to the delivery catheter and the sheath. Additional devices, systems, and methods of delivering and deploying a prosthesis are described.
Abstract:
The invention relates to medical device systems that include a delivery instrument comprising a sheath having an abluminal surface and a luminal surface; a radially-expandable frame disposed at least partially within the sheath, the frame having an abluminal surface at least partially in contact with the luminal surface of the sheath, and a luminal surface defining a sub-stantially cylindrical lumen; and a fine powder coating disposed on at least one of the abluminal surface of the frame and the luminal surface of the sheath. The invention also relates to methods of manufacturing, loading, and delivering the coated medical devices.
Abstract:
A coated implantable medical device 10 includes a structure 12 adapted for introduction into the vascular system, esophagus, trachea, colon, biliary tract, or urinary tract; at least one coating layer 16 posited on one surface of the structure; and at least one layer 18 of a bioactive material posited on at least a portion of the coating layer 16, where the coating layer 16 provides for the controlled release of the bioactive material from the coating layer. In addition, at least one porous layer 20 may be posited over the bioactive material layer 18, where the porous layer includes a polymer and provides for the controlled release of the bioactive material therethrough. Preferably, the structure 12 is a coronary stent. The porous layer 20 includes a polymer applied preferably by vapor or plasma deposition and provides for a controlled release of the bioactive material. It is particularly preferred that the polymer is a polyamide, parylene or a parylene derivative, which is deposited without solvents, heat or catalysts, and merely by condensation of a monomer vapor.
Abstract:
Medical devices for implantation in a body vessel, and methods of using and making the same, are provided. A medical device can include a frame with a vessel-engaging region on at least a portion of the medical device. The vessel-engaging region may be a particulate coating configured and adapted to engage the interior wall of a body vessel or to attach a material, such as a valve leaflet or graft material, to the frame. Methods of making an implantable medical device and methods of treating a subject are also disclosed.
Abstract:
The invention relates to a prosthetic valve for regulating flow through a body lumen and delivering a therapeutic agent into said lumen. In one embodiment, the prosthesis includes a frame having an exterior wall, a hollow interior space, a valve member, and at least one aperture through the exterior wall that permits a controlled amount of therapeutic agent loaded into the hollow interior into the surrounding body lumen following implantation. In another embodiment, the prosthesis includes a frame having a groove, a valve member, and therapeutic agent loaded in the groove.