Abstract:
Biopsy devices and methods are provided for collecting a sufficiently-sized tissue sample from a region at a known distance by boring into the sample region using simultaneous axial and rotational movement and providing a reduced risk of: over-passing or under-passing the sample sought, injury and trauma to the surrounding tissue area, having to stick the patient more than once, sample contamination, and the user's exposure to sharps.
Abstract:
Biopsy devices and methods are provided for collecting a sufficiently-sized tissue sample from a region at a known distance by boring into the sample region using simultaneous axial and rotational movement and providing a reduced risk of: over-passing or under-passing the sample sought, injury and trauma to the surrounding tissue area, having to stick the patient more than once, sample contamination, and the user's exposure to sharps.
Abstract:
The invention relates to medical device systems that include a delivery instrument comprising a sheath having an abluminal surface and a luminal surface; a radially-expandable frame disposed at least partially within the sheath, the frame having an abluminal surface at least partially in contact with the luminal surface of the sheath, and a luminal surface defining a sub-stantially cylindrical lumen; and a fine powder coating disposed on at least one of the abluminal surface of the frame and the luminal surface of the sheath. The invention also relates to methods of manufacturing, loading, and delivering the coated medical devices.
Abstract:
A trans-illuminating vein locator including a housing which has a base and a cap. In addition, a lens is operatively associated with the cap such that the cap and lens form a work surface which may be supported by the base. The work surface is configured to support a portion of a patient's body for examination. The trans-illuminating vein locator also includes one or more LEDs operatively disposed within the housing and configured to emit light through the lens to trans-illuminate a portion of a patient's body. Preferably, the light emitted by the one or more LEDs has a predominant wavelength of substantially between 600 nm and 640 nm, and is projected at a dispersion angle of 30 degrees or less.
Abstract:
A delivery and deployment device comprises a sheath having a proximal end, a distal end, and a lumen disposed therebetween; a dilator having a distal end slidingly disposed within the sheath lumen; a valve assembly comprising a valve housing affixed to the sheath and a valve disposed within the housing between the sheath and the dilator; and a valve lubrication mechanism disposed between the valve and the dilator.
Abstract:
Apparatus for facilitating deployment of a an implantable medical device includes a control member (20) having at least one tine member (35-37). A proximal region (35b-37b) of at least one of the tine members (35-37) is configured to engage an associated portion of a stent (60). In use, the control member (20) comprises a contracted delivery configuration in which the proximal region of the at least one of the tine member (35-37) is radially contracted, to radially constrain the associated portion of the stent (60). The control member (20) also comprises an expanded configuration in which the proximal region of the at least one of the tine member (35-37) expands radially outward relative to the central longitudinal axis to allow the stent to engage a body passage.
Abstract:
An attachment system for attaching an intravascular device to a vessel wall of a body vessel is disclosed. The attachment system includes an intravascular device and biological attachment material connected to the intravascular device. The biological attachment material is configured to attach the intravascular device to the vessel wall.
Abstract:
An attachment system for attaching an intravascular device to a vessel wall of a body vessel is disclosed. The attachment system includes a tubular expandable body defining a lumen therethrough. The tubular expandable body is configured to move between an expanded state to contact the body vessel and a collapsed state for delivery or retrieval. The tubular expandable body is configured to contact the vessel wall along the length of the tubular expandable body in the expanded state when deployed in the body vessel. An intravascular device is held to the exterior side of the tubular expandable body and is configured to contact the vessel wall when the tubular expandable body is in the expanded state and the system is deployed within a body vessel.
Abstract:
An aortic stent-graft may include a tubular graft extending from a proximal end to a distal end, the graft comprising a proximal sealing portion and an intermediate portion, wherein a proximal end of the intermediate portion abuts the distal end of the proximal sealing portion. At least one sealing stent may be attached to the proximal sealing portion. A first fenestration window is disposed in the intermediate portion. The first fenestration window has a length determined by the equation L=1.23*D−24 millimeters, where L is the length of the first fenestration window. D is between about 24 millimeters and 45 millimeters.
Abstract:
A delivery and deployment device comprises a sheath having a proximal end, a distal end, and a lumen disposed therebetween; a dilator having a distal end slidingly disposed within the sheath lumen; a valve assembly comprising a valve housing affixed to the sheath and a valve disposed within the housing between the sheath and the dilator; and a valve lubrication mechanism disposed between the valve and the dilator.