Abstract:
Many cell types in the body can remove apoptotic and cellular debris from tissues; however, the professional phagocyte, or antigen presenting cell (“APC”), has a high capacity to do so. The recognition of apoptotic cells (“ACs”) occurs via a series of evolutionarily-conserved, AC associated molecular-pattern receptors (“ACAMPRs”) on APCs that recognize and bind corresponding apoptotic-cell-associated molecular patterns (“ACAMPs”). These receptors recognize ligands such as phosphotidyl serine and oxidized lipids found on apoptotic cells. Savill et al. (2002); and Gregory et al. (2004).
Abstract:
Isolated anti-IL-12 antibodies, nucleic acids encoding antibodies or antibody portions, vectors, host cells, and methods of making are useful for production of antibody or portions for treating and/or diagnosing IL-12 related conditions, diseases, and disorders.
Abstract:
Isolated nucleic acids encoding an anti-IL-12 antibody or antibody portions, vectors, host cells, and methods of making are useful for production of antibody or portions for treating and/or diagnosing IL-12 related conditions, diseases, and disorders.
Abstract:
Isolated nucleic acids encoding an anti-IL-12 antibody or antibody portions, vectors, host cells, and methods of making are useful for production of antibody or portions for treating and/or diagnosing IL-12 related conditions, diseases, and disorders.
Abstract:
The present invention relates to an anti-IL-12 antibody, including isolated nucleic acids that encode an anti-IL-12 antibody, IL-12, vectors, host cells, transgenic animals or plants, and methods of making and using thereof, including therapeutic compositions, methods and devices.
Abstract:
The invention relates to the induction of responses relating to the maturation of dendritic cells, using IL-18 and IL-18 muteins, and compounds, compositions, methods of making and using thereof, including therapeutic methods and products.
Abstract:
The present invention relates to at least one novel chimeric, humanized or CDR-grafted anti-IL-6 antibodies derived from the murine CLB-8 antibody, including isolated nucleic acids that encode at least one such anti-IL-6 antibody, vectors, host cells, transgenic animals or plants, and methods of making and using thereof, including therapeutic compositions, methods and devices.
Abstract:
Isolated anti-IL-12 antibodies, nucleic acids encoding antibodies or antibody portions, vectors, host cells, and methods of making are useful for production of antibody or portions for treating and/or diagnosing IL-12 related conditions, diseases, and disorders.
Abstract:
The present invention relates to at least one novel chimeric, humanized or CDR-grafted anti-IL-6 antibodies derived from the murine CLB-8 antibody, including isolated nucleic acids that encode at least one such anti-IL-6 antibody, vectors, host cells, transgenic animals or plants, and methods of making and using thereof, including therapeutic compositions, methods and devices.
Abstract:
The present invention relates to at least one novel chimeric, humanized or CDR-grafted anti-IL-6 antibodies derived from the murine CLB-8 antibody, including isolated nucleic acids that encode at least one such anti-IL-6 antibody, vectors, host cells, transgenic animals or plants, and methods of making and using thereof, including therapeutic compositions, methods and devices.