摘要:
The present invention is an imaging element which includes a support, an image-forming layer superposed on the support, an electrically-conductive layer superposed on the support, and a transparent magnetic recording layer overlying the electrically-conductive layer. The electrically-conductive layer includes electrically-conductive agents dispersed in a film-forming binder which is a sulfonated polymer and the transparent magnetic recording layer contains ferromagnetic particles dispersed in an aromatic polyester binder having a T.sub.g of greater than 150.degree. C.
摘要:
The present invention can relate to an imaging element including a support, at least one image forming layer superposed on the support, at least one transparent magnetic recording layer superposed on the support, and an electrically-conductive layer superposed on the support. The electrically-conductive layer may include a sulfonated polyurethane film-forming binder and at least one metal antimonate particle.
摘要:
The present invention is an imaging element including, a support, at least one image-forming layer, and a transparent, electrically-conductive layer. The transparent, electrically-conductive layer includes conductive metal-containing fine particles dispersed in a polyurethane film-forming binder and a crosslinking agent. The polyurethane film-forming binder has a tensile elongation to break of at least 50% and a Young's modulus at a 2% elongation of a least 50,000 lb/in.sup.2.
摘要:
In accordance with one embodiment of the invention, a process for forming an electrically conductive layer is disclosed comprising (i) intercalating colloidal vanadium oxide with a water soluble vinyl-containing polymer, (ii) incorporating the intercalated colloidal vanadium oxide in a coating composition, and (iii) coating the coating composition on a substrate. In accordance with a second embodiment of the invention, a composition for forming an electrically conductive element or layer thereof is disclosed comprising (i) colloidal vanadium oxide intercalated with a water soluble vinyl-containing polymer and (ii) a binder which is distinct from the water soluble vinyl-containing polymer. Intercalation of vanadium oxide gels with water-soluble polymeric species in accordance with of the present invention results in a vanadium oxide gel having improved solution stability and reduced impact of solution aging on conductivity.
摘要:
The present invention is an imaging element which includes a support, an image-forming layer superposed on said support, a transparent magnetic recording layer superposed on said support; and an electrically-conductive layer superposed on said support. The transparent magnetic recording layer is composed of magnetic particles dispersed in a first film-forming polymeric binder. The electrically-conductive layer includes electrically-conductive metal-containing colloidal particles, swellable, smectite clay particles, a first polymeric binder which can sufficiently intercalate inside or exfoliate the smectite clay particles and a second film-forming polymeric binder, wherein the electrically-conductive metal-containing particles and the polymer-intercalated or polymer-exfoliated smectite clay particles are dispersed.
摘要:
A photographic support comprising; a polyester base having a first and a second side; an antistatic layer superposed on the first side of the base; a gelatin layer superposed on the second side of the base; and an auxiliary layer overlying said antistatic layer comprising 20 to 80 percent by weight hydroxypropyl methyl cellulose and a second binder.
摘要:
A process for forming an abrasion-resistant antistatic layer for an imaging element comprises: adjusting the pH of an aqueous composition of an electronically-conductive polymer to a pH of about 3 to about 10, and combining the pH-adjusted aqueous composition of the electronically-conductive polymer with an aqueous composition at a pH greater than 7 of a polyurethane film-forming binder having a tensile elongation to break of at least 50% and a Young's modulus measured at 2% elongation of at least 50000 psi. The process further comprises applying the resulting coating composition to the imaging element, thereby forming an abrasion-resistant antistatic layer on the element. The antistatic layer coating composition of the present invention can be applied to a wide variety of imaging elements, including, for example, photographic, electrostatographic, photothermographic, migration, electrothermographic, dielectric recording and thermal-dye-transfer imaging elements.
摘要:
The present invention is an imaging element which includes a support, an image-forming layer superposed on the support and an electrically-conductive layer superposed on the support. The electrically-conductive layer is composed of an electrically-conductive polymer and a polyurethane film-forming binder having a tensile elongation to break of at least 50% and a Young's modulus measured at 2% elongation of at least 50000 psi.
摘要:
The present invention is an imaging element which includes a support, an image-forming layer superposed on the support and an electrically-conductive layer superposed on the support. The electrically-conductive layer is composed of a sulfonated polyurethane film-forming binder and an electrically-conductive polymer.
摘要:
In accordance with one embodiment of the invention, an imaging element is disclosed comprising:(i) a support; (ii) at least one image forming layer; and (iii) an electrically-conductive layer comprising colloidal vanadium oxide intercalated with a water soluble vinyl-containing polymer. The electrically-conductive layer preferably additionally comprises a film-forming binder, which is distinct from the water soluble vinyl-containing polymer. The water soluble vinyl-containing polymer is preferably poly-N-vinylpyrrolidone, polyvinyl alcohol or an interpolymer thereof. Intercalation of vanadium oxide gels with water-soluble polymeric species in accordance with the present invention results in a vanadium oxide gel having improved solution stability and reduced impact of solution aging on conductivity, which improves manufacturing robustness and enables the use of many polymeric binders which could not be effectively used with conventional vanadium oxide gels in conductive layers of imaging elements.