Abstract:
A method for producing hydrogen using fuel cell off gases, the method feeding hydrocarbon fuel to a sulfur adsorbent to produce a desulfurized fuel and a spent sulfur adsorbent; feeding said desulfurized fuel and water to an adsorption enhanced reformer that comprises of a plurality of reforming chambers or compartments; reforming said desulfurized fuel in the presence of a one or more of a reforming catalyst and one or more of a CO2 adsorbent to produce hydrogen and a spent CO2 adsorbent; feeding said hydrogen to the anode side of the fuel cell; regenerating said spent CO2 adsorbents using the fuel cell cathode off-gases, producing a flow of hydrogen by cycling between said plurality of reforming chambers or compartments in a predetermined timing sequence; and, replacing the spent sulfur adsorbent with a fresh sulfur adsorbent at a predetermined time.
Abstract:
A method and reactor suitable for reformation of fuels at low temperatures is disclosed. The method includes introducing an oxidized porous metal felts with a catalyst powder in a reaction chamber having a heat exchange relationship with a heat-providing chamber, vaporizing a liquid mixture of alcohol and water using an lconel tubing, and introducing the vaporized liquid into the reaction chamber for producing a methane gas. The fuel reforming reactor includes a heat-providing chamber in a heat exchange relationship with at least one reaction chamber. Each reaction chamber having an aluminum shim lining on at least one interior surface. Each reaction chamber accommodating a catalyst powder and an oxidized porous metal felt. The catalyst powder loaded onto the oxidized porous metal felt to facilitate production of methane gas from alcohol for use with the internal combustion engine.
Abstract:
A method and reactor suitable for reformation of fuels at low temperatures is disclosed. The method includes introducing an oxidized porous metal felts with a catalyst powder in a reaction chamber having a heat exchange relationship with a heat-providing chamber, vaporizing a liquid mixture of alcohol and water using an Inconel tubing, and introducing the vaporized liquid into the reaction chamber for producing a methane gas. The fuel reforming reactor includes a heat-providing chamber in a heat exchange relationship with at least one reaction chamber. Each reaction chamber having an aluminum shim lining on at least one interior surface. Each reaction chamber accommodating a catalyst powder and an oxidized porous metal felt. The catalyst powder loaded onto the oxidized porous metal felt to facilitate production of methane gas from alcohol for use with the internal combustion engine.
Abstract:
A method for producing hydrogen using fuel cell off gases, the method feeding hydrocarbon fuel to a sulfur adsorbent to produce a desulfurized fuel and a spent sulfur adsorbent; feeding said desulfurized fuel and water to an adsorption enhanced reformer that comprises of a plurality of reforming chambers or compartments; reforming said desulfurized fuel in the presence of a one or more of a reforming catalyst and one or more of a CO2 adsorbent to produce hydrogen and a spent CO2 adsorbent; feeding said hydrogen to the anode side of the fuel cell; regenerating said spent CO2 adsorbents using the fuel cell cathode off-gases, producing a flow of hydrogen by cycling between said plurality of reforming chambers or compartments in a predetermined timing sequence; and, replacing the spent sulfur adsorbent with a fresh sulfur adsorbent at a predetermined time.