摘要:
A system and method for producing hydrogen gas. The system comprises at least one reformer reactor, at least one separator, at least one separator transport line, at least one regenerator reactor, at least one regenerator transport line and at least one recycling line. The reformer reactor is for containing a CO2 capturing sorbent A forming a used sorbent A*, wherein the reformer reactor is configured to allow reform of a feed material B and a steam C to produce a reformate gas mixture comprising H2 and CO2. The reformer reactor comprising a reformer inlet for feeding at least one of B and C into the reformer reactor and a reformer outlet for ejecting A* and H2. A separator configured to separate A* from H2. The separator comprising a separator inlet for feeding H2 and A* into the separator and a separator outlet for ejecting the separated A *. A separator transport line for transporting A* and H2 from the reformer outlet to the separator inlet. The regenerator reactor comprising a regenerator inlet for receiving at least a portion of A* separated in the separator. A regenerator power source configured to provide sufficient energy to the received A* for allowing release of CO2, thereby regenerating the sorbent. A regenerator outlet for ejecting the regenerated sorbent. A regenerator transport line for transporting the flow of A* from the separator outlet to the regenerator inlet. A recycling line arranged to transport at least a portion of the regenerated sorbent from the regenerator outlet into the reformer reactor. The regenerator transport line comprises a flow regulating device arranged to adjust the flow rate of A* being transported into the regenerator inlet.
摘要:
A hydrogen production system includes a desulfurization unit configured to remove a sulfur component from hydrocarbon gas. The system has a pre-reforming unit configured to convert hydrocarbons having two or more carbon atoms into methane (CH4) by reacting the hydrocarbon gas with water (H2O) vapor. The system has a mixed reforming unit configured to produce hydrogen (H2) and carbon monoxide (CO) by performing a mixed reforming reaction between the reaction product of the pre-reforming unit and carbon dioxide (CO2). The system has a separation unit for separating hydrogen (H2) and CO from the reaction product of the mixed reforming unit. The system has a first heat exchange unit configured to generate water vapor supplied to the pre-reforming unit using the heat of the reaction product of the mixed reforming unit.
摘要:
Zero emission nested-loop (ZEN) reforming provides a scalable, eco-friendly process to produce high quality hydrogen at a relatively low operating cost. In one embodiment, a ZEN system comprises a reactor, a regenerator, and a photocatalytic reformer. During operation, the reactor receives a gas mixture and outputs hydrogen and catalyst adsorbed with carbon dioxide. The gas mixture is methane, steam, or hydrogen. Next, the regenerator receives the catalyst adsorbed with carbon dioxide and outputs carbon dioxide and desorbed catalyst. Next, the photocatalytic reformer receives carbon dioxide output by the regenerator and outputs methane and oxygen. The reactor receives at least some of the methane output by the photocatalytic reformer. By recycling methane in this way, the need for additional methane to fuel the system is reduced. The ZEN reforming system provides a novel technique to convert greenhouse gas emissions and carbon dioxide into oxygen and reusable methane gas.
摘要:
Systems and methods for generating power using hydrogen fuel, such as derived from natural gas, are provided. Feed materials are introduced into a compact hydrogen generator to produce carbon dioxide, hydrogen gas and steam. Sorbent material within the compact hydrogen generator acts to absorb carbon dioxide, forming a used sorbent. Hydrogen gas and steam are separated from the used sorbent and passed to a power generator such as a hydrogen turbine to produce power. The used sorbent is introduced into a calciner and heated to desorb carbon dioxide and form a regenerated sorbent which can be recycled to the compact hydrogen generator.
摘要:
Proposed is a process and a plant for production of pure carbon monoxide and hydrogen by steam reforming of hydrocarbons, preferably methane or naphtha, to afford a raw synthesis gas and subsequent, multistage workup, purification and fractionation of the raw synthesis gas to afford the target products, wherein the material streams obtained as by-products of the process chain are also to be advantageously utilized. This is achieved according to the invention by providing the recirculating compressor provided for recycling of the by-product material streams with a plurality of parallel, independently operable compressor stages.
摘要:
A direct carbonaceous material to power generation system integrates one or more solid oxide fuel cells (SOFC) into a fluidized bed gasifier. The fuel cell anode is in direct contact with bed material so that the H2 and CO generated in the bed are oxidized to H2O and CO2 to create a push-pull or source-sink reaction environment. The SOFC is exothermic and supplies heat within a reaction chamber of the gasifier where the fluidized bed conducts an endothermic reaction. The products from the anode are the reactants for the reformer and vice versa. A lower bed in the reaction chamber may comprise engineered multi-function material which may incorporate one or more catalysts and reactant adsorbent sites to facilitate excellent heat and mass transfer and fluidization dynamics in fluidized beds. The catalyst is capable of cracking tars and reforming hydrocarbons.
摘要:
High-pressure steam supply in hydrogen production process is made more efficient by water gas shift process which comprises, in alternating sequence: (a) a reaction stage wherein a feed gas comprising CO and H2O is fed into a water gas shift reactor containing a sorbent material capable of adsorbing H2O and CO2 and wherein a product gas issuing from the reactor is collected, (b) a regeneration stage wherein CO2 is removed from the reactor, (c) a loading stage, wherein H2O is fed into the reactor; wherein said feed gas mixture has a molar ratio of H2O to CO below 1.2, and the loading stage is performed at a lower pressure than the pressure of the reaction stage.
摘要:
A method and system for processing an input fuel gas and steam to produce separate CO2 and output fuel gas streams. The method comprises the steps of using a decarboniser segment for reacting at least a solid sorbent reacts with the fuel gas and steam to remove carbon from the input fuel gas and to produce the output fuel gas stream in an exhaust gas from the decarboniser; using a calciner segment for reacting the solid sorbent from the decarboniser segment therein to release the CO2 into the CO2 gas stream; wherein CO2 partial pressures and temperatures in the decarboniser and calciner segments respectively are controlled such that the temperature in the decarboniser segment is higher than the temperature in the calciner.
摘要:
The invention provides a catalyst for the production of hydrogen by steam reforming. The catalyst is a porous catalyst which is based on at least aluminum oxide and preferably magnesium oxide, and further comprises boron and nickel. The porous catalyst comprises pores having an average pore size in the range of 0.1-50 nm. The activity of the catalyst may be further enhanced by addition of a noble metal such as Rh, Ru, Pd, Ir or Pt. The catalyst can be broadly used in hydrogen production processes, and is especially suitable for reforming using a membrane which is selective for a predetermined reaction product. Such process can be operated at relatively low temperatures of about 450-700° C.
摘要:
The present disclosure provides compositions including method of producing H2, variable volume reactors, methods of using variable volume reactors, and the like.