摘要:
The susceptibility of human macrophages to human immunodeficiency virus (HIV) infection depends on cell surface expression of the human CD4 molecule and CC cytokine receptor 5. CCR5 is a member of the 7-transmembrane segment superfamily of G-protein-coupled cell surface molecules. CCR5 plays an essential role in the membrane fusion step of infection by some HIV isolates. The establishment of stable, nonhuman cell lines and transgenic mammals having cells that coexpress human CD4 and CCR5 provides valuable tools for the continuing research of HIV infection. In addition, antibodies which bind to CCR5, CCR5 variants, and CCR5-binding agents, capable of blocking membrane fusion between HIV and target cells represent potential anti-HIV therapeutics for macrophage-tropic strains of HIV.
摘要:
This invention relates to bispecific fusion proteins effective in viral neutralization. More specifically, such proteins have two different binding domains, an inducing-binding domain and an induced-binding domain, functionally linked by a peptide linker. Such proteins, nucleic acid molecules encoding them, and their production and use in preventing or treating viral infections are provided. One prototypical bispecific fusion protein is sCD4-SCFv(17b), in which a soluble CD4 fragment (containing domains D1 and D2) is fused to a single chain Fv portion of antibody 17b via a linker.
摘要:
A chimeric gene directing the synthesis of hybrid recombinant fusion protein in a suitable expression vector has been constructed. The fusion protein possesses the property of selective cytotoxicity against specific virus-infected cells. A CD4(178)-PE40 hybrid fusion protein has been made for selectively killing HIV-infected cells.
摘要:
A chimeric gene directing the synthesis of hybrid recombinant fusion protein in a suitable expression vector has been constructed. The fusion protein possesses the property of selective cytotoxicity against specific virus-infected cells. A CD4(178)-PE40 hybrid fusion protein has been made for selectively killing HIV-infected cells.
摘要:
Provided herein is a mammalian cell transformed to contain a plasmid encoding a T7 or SP6 promoter operably linked to one or more HCV genes, a subgenomic replicon from a flavivirus and a cytoplasmic T7 and SP6 RNA amplification system. Also provided herein are isolated replication-competent HCV particles produced by the method comprising the steps of providing a transformed mammalian cell according to the first embodiment, culturing the cell, and recovering the replication-competent HCV particles from the cell culture. Provided herein are isolated HCV structural proteins produced by the method comprising the steps of providing a transformed mammalian cell according to the first embodiment, culturing the cell, and recovering the HCV structural proteins from the cell culture. Further provided herein is a system for assaying HCV entry into a cell comprising a first plasmid encoding a T7 or SP6 promoter operably linked to an HCV polynucleotide comprising at least the 5′-UTR to NS2 operably linked to an EMCV IRES in frame with an SP6 or T7 polymerase gene, respectively, a first host cell line expressing a replicon from a flavivirus and comprising a cytoplasmic T7 and SP6 RNA amplification system, a second plasmid encoding a reporter gene operably linked to both T7 and SP6 promoters in tandem, and a second host cell line comprising a cytoplasmic T7 polymerase or SP6 polymerase RNA amplification system.
摘要:
The susceptibility of human macrophages to human immunodeficiency virus (HIV) infection depends on cell surface expression of the human CD4 molecule and CC cytokine receptor 5. CCR5 is a member of the 7-transmembrane segment superfamily of G-protein-coupled cell surface molecules. CCR5 plays an essential role in the membrane fusion step of infection by some HIV isolates. The establishment of stable, nonhuman cell lines and transgenic mammals having cells that coexpress human CD4 and CCR5 provides valuable tools for the continuing research of HIV infection. In addition, antibodies which bind to CCR5, CCR5 variants, and CCR5-binding agents, capable of blocking membrane fusion between HIV and target cells represent potential anti-HIV therapeutics for macrophage-tropic strains of HIV.
摘要:
Provided herein is a mammalian cell transformed to contain a plasmid encoding a T7 or SP6 promoter operably linked to one or more HCV genes, a subgenomic replicon from a flavivirus and a cytoplasmic T7 and SP6 RNA amplification system. Also provided herein are isolated replication-competent HCV particles produced by the method comprising the steps of providing a transformed mammalian cell according to the first embodiment, culturing the cell, and recovering the replication-competent HCV particles from the cell culture. Provided herein are isolated HCV structural proteins produced by the method comprising the steps of providing a transformed mammalian cell according to the first embodiment, culturing the cell, and recovering the HCV structural proteins from the cell culture. Further provided herein is a system for assaying HCV entry into a cell comprising a first plasmid encoding a T7 or SP6 promoter operably linked to an HCV polynucleotide comprising at least the 5′-UTR to NS2 operably linked to an EMCV IRES in frame with an SP6 or T7 polymerase gene, respectively, a first host cell line expressing a replicon from a flavivirus and comprising a cytoplasmic T7 and SP6 RNA amplification system, a second plasmid encoding a reporter gene operably linked to both T7 and SP6 promoters in tandem, and a second host cell line comprising a cytoplasmic T7 polymerase or SP6 polymerase RNA amplification system.
摘要:
The susceptibility of human macrophages to human immunodeficiency virus (HIV) infection depends on cell surface expression of the human CD4 molecule and CC cytokine receptor 5. CCR5 is a member of the 7-transmembrane segment superfamily of G-protein-coupled cell surface molecules. CCR5 plays an essential role in the membrane fusion step of infection by some HIV isolates. The establishment of stable, nonhuman cell lines and transgenic mammals having cells that coexpress human CD4 and CCR5 provides valuable tools for the continuing research of HIV infection. In addition, antibodies which bind to CCR5, CCR5 variants, and CCR5-binding agents, capable of blocking membrane fusion between HIV and target cells represent potential anti-HIV therapeutics for macrophage-tropic strains of HIV.
摘要:
This invention relates to bispecific fusion proteins effective in viral neutralization. More specifically, such proteins have two different binding domains, an inducing-binding domain and an induced-binding domain, functionally linked by a peptide linker. Such proteins, nucleic acid molecules encoding them, and their production and use in preventing or treating viral infections are provided. One prototypical bispecific fusion protein is sCD4-SCFv(17b), in which a soluble CD4 fragment (containing domains D1 and D2) is fused to a single chain Fv portion of antibody 17b via a linker.
摘要:
A chimeric gene directing the synthesis of hybrid recombinant fusion protein in a suitable expression vector has been constructed. The fusion protein possesses the property of selective cytotoxicity against specific virus-infected cells. A CD4(178)-PE40 hybrid fusion protein has been made for selectively killing HIV-infected cells.