Abstract:
A method and apparatus for including in a processor instructions for performing horizontal intra-add operations on packed data. One embodiment of the processor is coupled to a memory. The memory has stored therein at least a first packed data. The processor performs operations on data elements in the first packed data to generate a plurality of data elements in a second packed data in response to receiving an instruction. At least two of the plurality of data elements in the second packed data store the results of an intra-add operation, at least one of these results coming from the operation on data elements of the first packed data. One embodiment of a software method utilizes horizontal intra-add instructions for performing butterfly computations as may be employed, for example, in Walsh-Hadamard transforms or in Fast-Fourier Transforms.
Abstract:
In one embodiment, a system comprises a portable computing device comprising a first graphics controller and a first communication interface, and a turbo station comprising a second communication interface to manage communication with the portable computing device, and at least one auxiliary computing component coupled to the communication interface and configured to process cooperatively with the first graphics controller in the portable computing device.
Abstract:
Method, apparatus, and program means for performing bitstream buffer manipulation with a SIMD merge instruction. The method of one embodiment comprises determining whether any unprocessed data bits for a partial variable length symbol exist in a first data block is made. A shift merge operation is performed to merge the unprocessed data bits from the first data block with a second data block. A merged data block is formed. A merged variable length symbol comprised of the unprocessed data bits and a plurality of data bits from the second data block is extracted from the merged data block.
Abstract:
An apparatus and method for extracting and loading data to/from a buffer are described. The method includes the selection of data from a data buffer in response to execution of a data access instruction. The data buffer includes a plurality of data storage devices, one or more of which initially contain the selected data. Accordingly, the plurality of data storage devices form a single address space that is addressable at a bit-level. When the selected data spans from a source data storage device to a next data storage device of the data buffer, a portion of the selected data from source data storage device is concatenated with a remaining portion of the selected data from the next data storage device to form the selected data as a contiguous unit. Finally, once the selected data is formed, the selected data is stored within a destination data storage device.
Abstract:
Method, apparatus, and program means for performing bitstream buffer manipulation with a SIMD merge instruction. The method of one embodiment comprises determining whether any unprocessed data bits for a partial variable length symbol exist in a first data block is made. A shift merge operation is performed to merge the unprocessed data bits from the first data block with a second data block. A merged data block is formed. A merged variable length symbol comprised of the unprocessed data bits and a plurality of data bits from the second data block is extracted from the merged data block.
Abstract:
An apparatus and method for single instruction multiple data (SIMD) modular multiplication are described. In one embodiment, the method includes selection of modular multiplication method available from an operating environment. Once the multiplication method is selected, a data access pattern for processing of data is selected. Finally, the selected modular multiplication method is executed in order to process data according to the selected data access pattern. In a further embodiment, a SIMD modular multiplication instruction is provided in order to enable simultaneous modular multiplication of multiplicand and multiplier operands, which may be vertically or horizontally accessed from memory, as indicated by a selected data access pattern. Alternatively, modular multiplication is implemented utilizing a SIMD byte shuffle operation, which enables modular multiplication of a constant multiplicand value to varying data multiplier values.
Abstract:
An apparatus and method for loading a data storage device with a plurality of randomly located data are described. The method includes loading, in response to execution of a multiple data load instruction, data within a destination data storage device wherein one or more data elements from the data are randomly located within a memory device. In one embodiment, addresses of the data elements are contained within a data storage device and indicated as index addresses. In addition, the data elements are stored n one or more data storage areas of a memory device, which include look-up tables, data arrays or the like. In addition, data elements within the destination data storage device, as well as address indexes within the address data storage device may be organized in response to execution of a data shuffle instruction according to a data processing operation instruction.
Abstract:
Method, apparatus, and program means for performing bitstream buffer manipulation with a SIMD merge instruction. The method of one embodiment comprises determining whether any unprocessed data bits for a partial variable length symbol exist in a first data block is made. A shift merge operation is performed to merge the unprocessed data bits from the first data block with a second data block. A merged data block is formed. A merged variable length symbol comprised of the unprocessed data bits and a plurality of data bits from the second data block is extracted from the merged data block.
Abstract:
A method and apparatus for including in a processor instructions for performing integer transforms including multiply-add operations and horizontal-add operations on packed data. In one embodiment, a processor is coupled to a memory that stores a first packed byte data and a second packed byte data. The processor performs operations on said first packed byte data and said second packed byte data to generate a third packed data in response to receiving a multiply-add instruction. A plurality of the 16-bit data elements in this third packed data storing the result of performing multiply-add operations on data elements in the first and second packed byte data. The processor adds together at least a first and a second 16-bit data element of the third packed data in response to receiving an horizontal-add instruction to generate a 16-bit result as one of a plurality of data elements of a fourth packed data.
Abstract:
A method and apparatus for including in a processor instructions for performing horizontal intra-add operations on packed data. One embodiment of the processor is coupled to a memory. The memory has stored therein at least a first packed data. The processor performs operations on data elements in the first packed data to generate a plurality of data elements in a second packed data in response to receiving an instruction. At least two of the plurality of data elements in the second packed data store the results of an intra-add operation, at least one of these results coming from the operation on data elements of the first packed data. One embodiment of a software method utilizes horizontal intra-add instructions for performing butterfly computations as may be employed, for example, in Walsh-Hadamard transforms or in Fast-Fourier Transforms.