Abstract:
Disclosed is a liquid crystal display capable of high quality image and bright display. Gate signal lines are curved at near switching elements of the liquid crystal display. A pixel area is defined by the gate signal lines and their intersecting data signal lines. Pixel electrodes and common electrodes are disposed along a longitudinal direction of a pixel. A pixel signal and a common signal line is connected to the pixel electrode and the common electrode respectively. A storage capacitor may be formed in the middle of a longitudinal direction of the pixel, or where generally a texture may arise during display. One half of the pixel may be symmetrical with the other half with respect to the storage capacitor. A common signal line may be parallel with the data signal line and be disposed nearer to the data signal line than a pixel signal line. The pixel may be disposed symmetrically with respect to the data signal line therebetween. The pixel shape may also be repeated in the direction of the gate signal line.
Abstract:
Disclosed are a display device and a method of driving the same that improve both moving image visibility and lateral visibility. A display panel including gate and data lines arranged in the form of a matrix for displaying an image, a gate driver for driving the gate line, and a data driver for supplying a low gray scale image signal, a high gray scale image signal, and a black impulsive signal to the data line within one frame period.
Abstract:
A liquid crystal display with better visibility and transmittance. The liquid crystal display includes a first plate having a first field-generating electrode, disposed in a pixel area on an insulating substrate, comprising a plurality of sub-electrodes which are separated from each other by a predetermined distance and arranged parallel to each other, and a connecting electrode electrically connecting the sub-electrodes. An alignment film that is rubbed in a first direction covers a first field-generating electrode and an alignment film that is rubbed in a second direction covers a second field-generating electrode to achieve a predetermined orientation of the liquid crystals when no field is applied and more uniform rotation of the liquid crystal molecules when a field is applied.
Abstract:
A method for driving a display device includes: dividing an entire gray-scale region corresponding to a data gray scale into a first gray-scale region and a second gray-scale region and setting a first gamma value of the first gray-scale region and a second gamma value of the second gray-scale region, the first gamma value being smaller than the second gamma value; providing a first gray-scale display voltage corresponding to the data gray scale to a display panel during a first section of one horizontal period by using the first gamma value or the second gamma value selected by an inputted data gray scale; and providing a second gray-scale display voltage corresponding to a black gray scale to the display panel during a second section of the one horizontal period.
Abstract:
A liquid crystal display panel having improved optical transmissivity and viewing angle includes a first substrate, a second substrate and a liquid crystal layer. The first substrate includes a first base substrate, a plurality of gate lines and a plurality of data lines, and a pixel electrode. The gate lines and the data lines are disposed on the first base substrate and cross each other. The pixel electrode includes a first pixel electrode part and a second pixel electrode part disposed on the first base substrate and inclined in a different direction from each other with respect to the gate lines. The second substrate includes a second base substrate and a common electrode disposed on the second base substrate and alternately positioned with the pixel electrode.
Abstract:
A liquid crystal display with better visibility and transmittance. The liquid crystal display includes a first plate having a first field-generating electrode, disposed in a pixel area on an insulating substrate, comprising a plurality of sub-electrodes which are separated from each other by a predetermined distance and arranged parallel to each other, and a connecting electrode electrically connecting the sub-electrodes. An alignment film that is rubbed in a first direction covers a first field-generating electrode and an alignment film that is rubbed in a second direction covers a second field-generating electrode to achieve a predetermined orientation of the liquid crystals when no field is applied and more uniform rotation of the liquid crystal molecules when a field is applied.
Abstract:
A liquid crystal display with better visibility and transmittance. The liquid crystal display includes a first plate having a first field-generating electrode, disposed in a pixel area on an insulating substrate, comprising a plurality of sub-electrodes which are separated from each other by a predetermined distance and arranged parallel to each other, and a connecting electrode electrically connecting the sub-electrodes. An alignment film that is rubbed in a first direction covers a first field-generating electrode and an alignment film that is rubbed in a second direction covers a second field-generating electrode to achieve a predetermined orientation of the liquid crystals when no field is applied and more uniform rotation of the liquid crystal molecules when a field is applied.
Abstract:
In a display apparatus and a method of driving the same, an active period during which one pixel is turned on is divided into a red sub frame, a green sub frame, a blue sub frame, and a white sub frame. A controller compares a gray scale of a fourth image data corresponding to the white sub frame with a reference gray scale and compensates a first image data, a second image data, and a third image data corresponding to the red, green, and blue sub frames, respectively, in accordance with the comparison result.
Abstract:
A thin film transistor array panel may comprise gate lines including gate electrodes and storage electrode lines including storage electrodes that are formed on the insulating substrate, a semiconductor layer formed on the gate insulating layer covering the gate lines, data lines and drain electrodes which are formed on the gate insulating layer, the drain lines including source electrodes formed at least on the semiconductor layer and intersecting the gate lines, and the drain electrodes being separated from the data lines and opposite to the data lines with respect to the gate electrodes and including a storage capacitor conductor overlapping the storage electrodes. Pixel electrodes and common electrodes may be formed on the passivation layer for covering the semiconductor layer. The pixel electrodes and the common electrodes may be neither perpendicular to nor parallel to the data lines and may be made of opaque conductive material.
Abstract:
A liquid crystal display panel having improved optical transmissivity and viewing angle includes a first substrate, a second substrate and a liquid crystal layer. The first substrate includes a first base substrate, a plurality of gate lines and a plurality of data lines, and a pixel electrode. The gate lines and the data lines are disposed on the first base substrate and cross each other. The pixel electrode includes a first pixel electrode part and a second pixel electrode part disposed on the first base substrate and inclined in a different direction from each other with respect to the gate lines. The second substrate includes a second base substrate and a common electrode disposed on the second base substrate and alternately positioned with the pixel electrode.