Abstract:
A fan unit which in use forms part of a gases supply unit, the gases supply unit suitable for use as part of a system for providing heated humidified gases to a user, the fan unit having a casing that has an inlet aperture and an outlet passage, the outlet passage including an exit aperture, the fan unit also including a fan which is located inside the casing and which is adapted for connection to a motor to drive rotation of the fan in use, the fan drawing gases into the casing via the inlet aperture, and forcing these gases out of the casing via the outlet passage as a gases stream, the outlet passage further including at least one bypass vent hole independent of the exit aperture and arranged at an angle to the path of the gases stream through the outlet passage.
Abstract:
A breathing gases supply apparatus 1 can comprise a blower 103/105 and breathing circuit for delivering breathing gases to a patient. The apparatus also can comprise a first controller 109, the controller 109 configured to receive input from at least one sensor 110-112 indicative of patient breathing, and a transmitter 201 configured to communicate with the controller 109 and transmit control signals to an electronic apparatus 203. The controller 109 can be configured to determine sleep in a patient based on the occurrence of a breathing pattern indicative of sleep, detected from the input received from the sensor 110-112 and upon determining sleep, operate the transmitter 201 to send a control signal to control an electronic apparatus 203.
Abstract:
A CPAP system for supplying humidified gases to a user is disclosed in which various interfaces are described for gas delivery. A mask cushion including a deformable cushion and thin sheath is described.
Abstract:
A fan unit which in use forms part of a gases supply unit, the gases supply unit suitable for use as part of a system for providing heated humidified gases to a user, the fan unit having a casing that has an inlet aperture and an outlet passage, the outlet passage including an exit aperture, the fan unit also including a fan which is located inside the casing and which is adapted for connection to a motor to drive rotation of the fan in use, the fan drawing gases into the casing via the inlet aperture, and forcing these gases out of the casing via the outlet passage as a gases stream, the outlet passage further including at least one bypass vent hole independent of the exit aperture and arranged at an angle to the path of the gases stream through the outlet passage.
Abstract:
A CPAP system for supplying humidified gases to a user is disclosed in which various interfaces are described for gas delivery. A mask cushion including a deformable cushion and thin sheath is described.
Abstract:
A breathing gases supply apparatus 1 can comprise a blower 103/105 and breathing circuit for delivering breathing gases to a patient. The apparatus also can comprise a first controller 109, the controller 109 configured to receive input from at least one sensor 110-112 indicative of patient breathing, and a transmitter 201 configured to communicate with the controller 109 and transmit control signals to an electronic apparatus 203. The controller 109 can be configured to determine sleep in a patient based on the occurrence of a breathing pattern indicative of sleep, detected from the input received from the sensor 110-112 and upon determining sleep, operate the transmitter 201 to send a control signal to control an electronic apparatus 203.
Abstract:
A positive airway pressure apparatus is automatically adjusting. Pressure increases in response to apnea events when the apparatus is in one or more responsive states. Pressure does not increase in response to apnea events when the apparatus is in a non-responsive state. The apparatus switches between responsive and nonresponsive states depending upon any of a number of different criteria that help differentiate between open airway apnea events and closed airway apnea events.