Abstract:
An overhead projector for irradiating a spatial light modulator with reading light to read out a subject image written in the spatial light modulator with writing light and projecting the subject image read out with the reading light, wherein the spatial light modulator consists of photoconductive layer for receiving the writing light coming from a subject to reproduce the subject image, light modulating layer formed by a liquid crystal of which molecules are arranged in a homeotropic orientation for modulating the reading light of which a waveband is limited to a prescribed range according to the subject image reproduced in the photoconductive layer, and a dielectric mirror having wavelength selectivity for reflecting the reading light with the waveband modulated by the light modulating layer.
Abstract:
A display unit which can be used with various sources of information includes a light-to-light conversion element composed of first and second stripe electrodes arranged to jointly form a matrix electrode, and a photoconductive layer and a light modulation layer disposed between the first and second stripe electrodes, the impedance of the photoconductive layer changes with information written to the light-to-light conversion element. The photoconductive layer is irradiated with a linear light beam deflected in a direction to intersect first stripe electrode, while at the same time successive pieces of information to be inputted to corresponding picture elements are supplied to respective stripe electrode elements of the first stripe electrode. With the use of the matrix electrode, information can be written to and read out from the light-to-light conversion element at a higher response rate with high resolution.
Abstract:
A light-light transfer method using a spatial light modulator realizes an image display with a high utilizing of light without causing an undesirable residual image. The spatial light modulator is constituted to include two electrodes and at least a photoconductor layer member and a photo-modulation layer member used in a birefringence operating mode both being sandwiched between the two electrodes. A writing light is entered from the photoconductive layer member side so that its exposure value varies from the minimum exposure value to the maximum exposure value in a condition that a predetermined operation voltage is supplied between the two electrodes. In this instant, a voltage applied between both ends of the photo-modulation layer member corresponds to a voltage obtained by subtracting a voltage drop amount, occurring in the photoconductor layer member due to an incidence of the writing light, from said predetermined operation voltage applied in advance between said two electrodes. An operational condition of the spatial light modulator is set so that the voltage applied between both ends of the photo-modulation layer member becomes a voltage monotonously exceeding a voltage value corresponding to an extreme value of a degree of photo-modulation in a characteristic curve showing a relationship between an applied voltage and a degree of photo-modulation in the photo-modulation layer member, at the timing when the writing light of the maximum exposure value is entered into the spatial light modulator.
Abstract:
There is provided a polarization converter for producing a beam of linearly polarized light from a randomly polarized light. The randomly polarized light is separated into a first polarized light which is projected in a first predetermined direction and a second polarized light having a predetermined angular relationship with the first polarized light. The second polarized light is converted into a third polarized light a polarization of which is identical to that of the first polarized light. By providing a predetermined two-dimensional positional relationship between the first and third polarized lights, the beam of linearly polarized light is produced and advanced on the outside of the converter in a second predetermined direction.
Abstract:
An image processing system for an image display comprising an image data producing device for producing image data corresponding to an image to be displayed and a display device for displaying the image on the basis of the produced image data. The image data producing device divides the image data into a plurality of data sections respectively corresponding to image areas constituting the image so that each of the plurality of data sections is produced as serial data and the plurality of data sections are outputted in parallel. The display device includes a number of pixel elements continuously arranged one-dimensionally or two-dimensionally and equally divided into a plurality of element sections respectively corresponding to the plurality of data sections. The display device is responsive to the image data from the image data producing device so that the plurality of data sections are inputted in parallel to the plurality of element sections, whereby the display device displays the image on a screen on the basis of the plurality of inputted data sections. This arrangement can speedily display a jointless high-grade image in real time.
Abstract:
A display unit includes a light-emitting element array having a plurality of linearly arranged light-emitting elements drivable by a time sequential image information signal to emit beams of light in accordance with pieces of information allotted to the corresponding picture elements, a deflector such as a polygon mirror for deflecting the light beams simultaneously in a direction perpendicular to the longitudinal direction of the light-emitting element array, and a light-to-light conversion element including a photoconductive layer and a photo-modulation layer, the light beams being imaged on the photoconductive layer.
Abstract:
The present invention offers a display system for displaying information comprising a linear array of N light-emitting devices emitting light of predetermined wavelength, the devices are arranged respectively with N pixels, a stream of the information is divided into pieces each of which containing the N pixels, and the N light-emitting devices are caused to emit N light beams simultaneously in a form of array during a given period for every divided piece of the information, the every divided piece of information may correspond to one line of a frame of picture, the N light beams are intensity-modulated respectively with the divided piece of the information, the N light beams are deflected simultaneously in a direction perpendicular to a direction of the array of the N light beams, and a spatial light modulator having a photoconductive layer and a light modulation layer interposed between a pair of electrodes, the photoconductive layer is responsive to the deflected N light beams incident thereto through a focusing lens as a writing light, and a reading light of visible wavelength which is shorter than the predetermined wavelength of the emitted light from the linear array of the N light-emitting devices, the reading light irradiates the photomodulation layer of the spatial light modulator to read out and display the written information thereon.
Abstract:
A clear color image having a high contrast ratio without particular coloration is displayed on a screen by improved display apparatus. Such display apparatus is comprised of a spatial light modulator including a photo-conductive layer, a photo-modulator layer and a dielectric mirror, a device for writing color images of different colors onto the spatial light modulator time-divisionally in a sequence of the different colors, a reading device for producing reading lights having different colors in synchronism with time-divisional writing of the color images, and for projecting the reading lights to the spatial light modulator, a driving device for supplying the spatial light modulator with different voltages and frequencies correspondingly with the reading light of different colors and in synchronism with time-divisional projections of the reading lights, and a device for projecting the color images read out from the spatial light modulator on the display device.The dielectric mirror may have a light absorbance characteristic controlled to be wavelength-selective to absorb a color of light to which the photo-conductive layer is most sensitive, so that lights having different colors leaked into the photo-conductive layer through the dielectric mirror are controlled to cause a uniform impedance of the photo-conductive layer.
Abstract:
This specification discloses an image projector for projecting a tri-color composite optical image on a screen as a magnified optical image. A reading light beam emitted from a light source is separated into three color beams, e.g., Red, Green and Blue color beams through a tri-color separation and composition optical system. The separated color beams are irradiated on image forming devices provided correspondingly with Red, Green and Blue color images to read out color images respectively therefrom. Each of the reflected light beams from the image forming device carrying color image information impinges again on the tri-color separation and composition optical system to compose a composite image beam. The composite image beam is projected on the screen through an optical lens system comprising a first lens group, a second lens group and a third lens group disposed along an optical axis in order. The first lens group forms a composite color image on the second lens group by focusing the composite image beam from the tri-color separation and composition optical system. The second lens group converges the composite image beam therefrom to the third lens group. The third lens group projects the composite image beam on the screen as a magnified image. A focal length of the lens system is arranged shorter than a back-focal length defined as a distance between the front surface of the first lens group and a object focal point thereof.
Abstract:
A drive apparatus for an optical element array includes a counter counting clock pulses and being periodically reset at a horizontal scanning period. The counter outputs first and second counter signals out of phase with each other. A latch holds a pixel-corresponding segment of an input image signal. One of clock signals out of phase with each other is selected in response to the pixel-corresponding input-signal segment held by the latch. A first comparator compares the first counter signal and the pixel-corresponding input-signal segment held by the latch, and outputs a first identity signal when the first counter signal and the pixel-corresponding input-signal segment are equal to each other. A second comparator compares the second counter signal and the pixel-corresponding input-signal segment held by the latch, and outputs a second identity signal when the second counter signal and the pixel-corresponding input-signal segment are equal to each other. A drive pulse is generated which starts in synchronism with a start of a horizontal scanning period and which ends in response to the selected clock signal and in response to the first and second identity signals. An optical element in the array is driven in response to the drive pulse.