摘要:
Provided is a multi-layered sheet which has undergone heating corresponding to brazing, such as an aluminum-alloy radiator tube, or a multi-layered sheet such as an aluminum-alloy brazing sheet. The multi-layered sheet can have a reduced thickness and has excellent fatigue properties. The multi-layered sheet of aluminum alloys comprises a core layer (2) which has been clad at least with a sacrificial layer (3). This multi-layered sheet is a multi-layered sheet to be subjected to brazing or welding to produce a heat exchanger or is a multi-layered sheet which has undergone heating corresponding to brazing. The core layer (2) comprises a specific 3000-series composition. In this core layer (2), the average density in number of dispersed particles having a specific size has been regulated. As a result, fatigue properties, which govern cracking, can be highly improved.
摘要:
Provided is a multi-layered sheet which has undergone heating corresponding to brazing, such as an aluminum-alloy radiator tube, or a multi-layered sheet such as an aluminum-alloy brazing sheet. The multi-layered sheet can have a reduced thickness and has excellent fatigue properties. The multi-layered sheet of aluminum alloys comprises a core layer (2) which has been clad at least with a sacrificial layer (3). This multi-layered sheet is a multi-layered sheet to be subjected to brazing or welding to produce a heat exchanger or is a multi-layered sheet which has undergone heating corresponding to brazing. The core layer (2) comprises a specific 3000-series composition. In this core layer (2), the average density in number of dispersed particles having a specific size has been regulated. As a result, fatigue properties, which govern cracking, can be highly improved.
摘要:
There are provided an aluminum alloy plate having high strength and excellent corrosion resistance even though the plate is made thinner, and a heat exchanger formed thereof. In an aluminum alloy plate having a core material and a surface material cladded on at least one side of the core material, the surface material includes 0.030-0.30% by mass of Fe, 0.40-1.9% by mass of Mn, 0.40-1.4% by mass of Si, and 2.0-5.5% by mass of Zn, the rest comprises Al and inevitably included impurities, and an area ratio of an intermetallic compound containing Al and Mn to a whole surface of the surface material is 1% or less.
摘要:
The present invention relates to an aluminum alloy brazing sheet (1) for a heat exchanger improved in a life including a fatigue in a plastic area and an aluminum alloy heat exchanger tube (11) using the brazing sheet, which is composed of: a core material (2) of an Al—Mn series alloy; a skin material (3) of any one of an Al—Zn series alloy, an Al—Zn—Mg series alloy, an Al—Si—Mn—Zn series alloy, and an Al—Si—Mn—Mg—Zn series alloy clad on one side of the core material; and a brazing material (4) of an Al—Si series alloy clad on the other side of the core material, and is adapted so that an X-ray diffraction intensity ratio of the aluminum alloy brazing sheet satisfies a relational expression of I200/(I111+I200+I220+I311)≧0.4.
摘要:
Disclosed herein is an aluminum alloy clad sheet for a heat exchanger including a core layer, a sacrificial layer formed on one surface of the core layer, and a filler layer including an Al—Si based alloy formed on the other surface of the core layer. The core layer includes a predetermined amount of Si, Cu, Mn, Ti, and Mg, the remainder including Al and inevitable impurities, and the sacrificial layer includes a predetermined amount of Si, Mn, and Zn, the remainder including Al and inevitable impurities. The core layer has a crystal grain size after the brazing heat treatment at 595° C. for 3 minutes of at least 50 μm and less than 300 μm. The filler layer and the sacrificial layer are defined for their thickness, and the number of intermetallic compounds in the core layer is also defined to a predetermined range. By such constitution, the aluminum alloy clad sheet has improved fatigue life and post-braze strength, high corrosion resistance, and excellent erosion resistance and brazeability.
摘要:
Skin material of a clad material is composed of one or more layers, each layer of the skin materials is made of a metal different from the core material in their component compositions, and at least one layer of the skin material has a cast microstructure, when the skin material is superposed on either of one or both faces of the core material.
摘要:
Disclosed is an aluminum alloy brazing sheet for heat exchanger which excels in resistance to corrosion from its inside and simultaneously attains satisfactory erosion resistance and high strength. This includes a core material of an Al alloy containing predetermined amounts of Si, Mn, Cu, Mg, and Ti; a clad material of an Al alloy containing predetermined amounts of Si, Mn, and Zn, having a predetermined thickness, and lying on one side of the core material so as to constitute an inner side of a tube member of the heat exchanger; and a filler material of an Al alloy containing a predetermined amount of Si, having a predetermined thickness, and lying on the other side of the core material so as to constitute an outer side of the tube member. The crystal grain size of the core material after brazing under specific conditions is 50 μm or more but less than 300 μm in a rolling direction.
摘要:
An Al—Si based brazing material is formed on one surface of a core material, and a cladding material is formed on the other surface of the core material with a cladding ratio of 6 to 30% with respect to an entire thickness thereof. The core material contains 0.2 mass % or less of Mg, 0.3 mass % or less of Cr, 0.2 mass % or less of Fe, 0.2 to 1.0 mass % of Cu, 0.05 to 1.3 mass % of Si, 0.3 to 1.8 mass % of Mn, and 0.02 to 0.3 mass % of Ti in such a manner that a total content of Cu and Si is in the range of 2.0 mass % or less. The cladding material contains 2 to 9 mass % of Zn, 0.3 to 1.8 mass % of Mn and/or 0.04 to 1.2 mass % of Si, and further contains 0.02 to 0.25 mass % of Fe, 0.01 to 0.30 mass % of Cr, 0.005 to 0.15 mass % of Mg, and/or 0.001 to 0.15 mass % of Cu.
摘要:
Disclosed is an aluminum alloy brazing sheet for heat exchangers, which has high strength after brazing, high corrosion resistance and excellent brazability. Specifically disclosed is an aluminum alloy brazing sheet (1a) for heat exchangers comprising a core member (2), a sacrificial member (3) formed on one side of the core member (2), and a brazing filler metal (4) formed on the other side of the core member (2) and composed of an Al—Si alloy. The sacrificial member (3) contains 0.03-0.30% by mass of Fe, 0.01-0.40% by mass of Mn, 0.4-1.4% by mass of Si, 2.0-5.5% by mass of Zn, not more than 0.05% by mass of Mg and the balance of Al and unavoidable impurities. In addition, the sacrificial member (3) has a crystal grain size of 100-400 & mgr;m after 5-minute heat treatment at 600 & ring;C during the brazing.
摘要:
A method for manufacturing a clad material composed of a core material and one or more skin materials which are superposed on either one or both faces of the core material, includes a clad material preparation process where an ingot for core material is manufactured by melting and casting a metal, and an ingot for skin material is manufactured by melting and casting a different metal for skin material, without hot rolling. The ingot for skin material is superposed as a skin material at a predetermined position of either one or both faces of the ingot for core material and the superposed material is hot-rolled to manufacture a clad material.