摘要:
The present invention provides a rare-earth halide scintillating material and application thereof. The rare-earth halide scintillating material has a chemical formula of REaCebX3, wherein RE is a rare-earth element La, Gd, Lu or Y, X is one or two of halogens Cl, Br and I, 0≤a≤1.1, 0.01≤b≤1.1, and 1.0001≤a+b≤1.2. By taking a +2 valent rare-earth halide having the same composition as a dopant to replace a heterogeneous alkaline earth metal halide in the prior art for doping, the rare-earth halide scintillating material is relatively short of a halogen ion. The apparent valence state of a rare-earth ion is between +2 and +3. The rare-earth halide scintillating material belongs to non-stoichiometric compounds, but still retains a crystal structure of an original stoichiometric compound, and has more excellent energy resolution and energy response linearity than the stoichiometric compound.
摘要:
According to the invention, there are disclosed a power metallurgy composite cam sheet and a fabrication method thereof. The power metallurgy composite cam sheet is constructed by combining a power metallurgy cam be composited on a surface of a matrix. The fabrication method of the power metallurgy composite cam sheet includes sinter welding, braze welding, argon arc welding, laser welding, hot pressing and other methods. The powder metallurgy composite cam sheet fabricated by the invention has merits of stable size, good impact toughness, good abrasion resistance, low cost and so on, so that it can replace an integral cam sheet that is currently fabricated by forging, drawing, power metallurgy or other process. It is suitable for the case where a hollow camshaft is prepared by mechanical assembly, hydraulic forming, welding or other process, so that the usage requirements of an assembled camshaft can be met.
摘要:
An aluminum alloy material suitable for the manufacture of automotive body panels comprising: Si 0.6 to 1.2 wt %, Mg 0.7 to 1.3 wt %, Zn 0.25 to 0.8 wt %, Cu 0.02 to 0.20 wt %, Mn 0.01 to 0.25 wt %, Zr 0.01 to 0.20 wt %, with the balance being Al and incidental elements, based on the total weight of the aluminum alloy material. The aluminum alloy material satisfies the inequation of: 2.30 wt %≦(Si+Mg+Zn+2Cu) wt %≦3.20 wt %.
摘要:
The invention relates to a nano silicon-carbon composite negative material for lithium ion batteries and a preparation method thereof. A porous electrode composed of silica and carbon is taken as a raw material, and a nano silicon-carbon composite material of carbon-loaded nano silicon is formed by a molten salt electrolysis method in a manner of silica in-situ electrochemical reduction. Silicon and carbon of the material are connected by nano silicon carbide, and are metallurgical-grade combination, so that the electrochemical cycle stability of the nano silicon-carbon composite material is improved. The preparation method of the nano silicon-carbon composite material provided by the invention comprises the following steps: compounding a porous block composed of carbon and silica powder with a conductive cathode collector as a cathode; using graphite or an inert anode as an anode, and putting the cathode and anode into CaCl2 electrolyte or mixed salt melt electrolyte containing CaCl2 to form an electrolytic cell; applying voltage between the cathode and the anode; controlling the electrolytic voltage, the electrolytic current density and the electrolytic quantity, so that silica in the porous block is deoxidized into nano silicon by electrolytic reduction, and the nano silicon-carbon composite material for lithium ion batteries is prepared at the cathode.
摘要:
Provided is a device for preparing a large-sized high-quality aluminium alloy ingot, which is mainly composed of a uniform cooler, a hot top, an oil-gas lubrication mold, an induction coil and a dummy ingot, wherein the hot top is arranged above the oil-gas lubrication mold, the induction coil is arranged outside the oil-gas lubrication mold, the uniform cooler is arranged inside the oil-gas lubrication mold, and the dummy ingot is arranged below the oil-gas lubrication mold. Further provided is a method for preparing a large-sized high-quality aluminium alloy ingot. The device combines a partitioned gas supply mold with the uniform cooler and an electromagnetic stirrer, and the effective coupling of the three achieves forced and uniform solidification forming of a melt under gas pressure contact conditions, such that a stable and continuous gas film is formed between the melt and the mold. The ingot has a smooth surface, and a fine and uniform internal structure.
摘要:
The present disclosure relates to a fluorescent powder and a light-emitting device including the same. The fluorescent powder includes an inorganic compound. The inorganic compound contains components including an element M, an element A, an element D, an element E, and an element R. The element M is selected from Eu, Ce, Mn, Tb, Dy, and Tm, the element A is selected from Mg, Ca, Sr, and Ba, the element D is selected from B, Al, Ga, In, La, Gd, Sc, Lu, and Y, the element E is selected from Si, Ge, Zr, and Hf, and the element R is at least two elements selected from N, O, F, and Cl. In a powder X-Ray Diffraction (XRD) spectrum with CoKα radiation, the inorganic compound at least has diffraction peaks within ranges of an Bragg angle (2θ) from 27.3° to 28.3°, 29.7° to 30.7°, 41.9° to 42.9°, and 43.5° to 44.5°.
摘要:
The present invention provides a rare-earth halide scintillating material and application thereof. The rare-earth halide scintillating material has a chemical formula of REaCebX3, wherein RE is a rare-earth element La, Gd, Lu or Y, X is one or two of halogens Cl, Br and I, 0≤a≤1.1, 0.01≤b≤1.1, and 1.0001≤a+b≤1.2. By taking a +2 valent rare-earth halide having the same composition as a dopant to replace a heterogeneous alkaline earth metal halide in the prior art for doping, the rare-earth halide scintillating material is relatively short of a halogen ion. The apparent valence state of a rare-earth ion is between +2 and +3. The rare-earth halide scintillating material belongs to non-stoichiometric compounds, but still retains a crystal structure of an original stoichiometric compound, and has more excellent energy resolution and energy response linearity than the stoichiometric compound.
摘要:
An aluminum alloy material suitable for the manufacture of automotive body panels comprising: Si 0.6 to 1.2 wt %, Mg 0.7 to 1.3 wt %, Zn 0.25 to 0.8 wt %, Cu 0.02 to 0.20 wt %, Mn 0.01 to 0.25 wt %, Zr 0.01 to 0.20 wt %, with the balance being Al and incidental elements, based on the total weight of the aluminum alloy material. The aluminum alloy material satisfies the inequation of: 2.30 wt %≤(Si+Mg+Zn+2Cu) wt %≤3.20 wt %.
摘要:
The present disclosure relates to a fluorescent powder and a light-emitting device including the same. The fluorescent powder includes an inorganic compound. The inorganic compound contains components including an element M, an element A, an element D, an element E, and an element R. The element M is selected from Eu, Ce, Mn, Tb, Dy, and Tm, the element A is selected from Mg, Ca, Sr, and Ba, the element D is selected from B, Al, Ga, In, La, Gd, Sc, Lu, and Y, the element E is selected from Si, Ge, Zr, and Hf, and the element R is at least two elements selected from N, O, F, and Cl. In a powder X-Ray Diffraction (XRD) spectrum with CoKα radiation, the inorganic compound at least has diffraction peaks within ranges of an Bragg angle (2θ) from 27.3° to 28.3°, 29.7° to 30.7°, 41.9° to 42.9°, and 43.5° to 44.5°.
摘要:
The application relates to fluorescent powder which has a garnet structure and can be effectively excited by ultraviolet light or blue light, a method for preparing the fluorescent powder, and a light emitting device, an image display device and an illumination device comprising the fluorescent powder. A chemical formula of the fluorescent powder is expressed as: (M1a-xM2x)ZrbM3cOd, where M1 is one or two elements selected from Sr, Ca, La, Y, Lu and Gd, Ca or Sr being necessary; M2 is one or two elements selected from Ce, Pr, Sm, Eu, Tb and Dy, Ce being necessary; M3 is at least one element selected from Ga, Si, and Ge, Ga being necessary; and 2.8≦a≦3.2, 1.9≦b≦2.1, 2.8≦c≦3.2, 11.8≦d≦12.2, and 0.002≦x≦0.6.