Abstract:
A personal audio device, such as a wireless telephone, includes an adaptive noise canceling (ANC) circuit that generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cancel ambient audio sounds. A processing circuit implements one or more adaptive filters that control the generation of the anti-noise signal. At least one of the adaptive filters is partitioned into a first portion having a fixed frequency response and a second portion having a variable frequency response. The partitioned filter may be an adaptive filter that generates the anti-noise signal directly from the reference microphone signal. An error microphone may be provided to measure the ambient sounds and transducer output near the transducer, and a secondary path adaptive filter included to generate an error signal from the error microphone signal, which may be partitioned, alone or in combination.
Abstract:
A personal audio device, such as a wireless telephone, includes noise canceling circuit that adaptively generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone may also be provided proximate the speaker to measure the output of the transducer in order to control the adaptation of the anti-noise signal and to estimate an electro-acoustical path from the noise canceling circuit through the transducer. A processing circuit that performs the adaptive noise canceling (ANC) function also either adjusts the frequency response of the anti-noise signal with respect to the reference microphone signal, and/or by adjusting the response of the adaptive filter independent of the adaptation provided by the reference microphone signal.
Abstract:
A personal audio device, such as a wireless telephone, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone is also provided proximate the speaker to estimate an electro-acoustical path from the noise canceling circuit through the transducer. A processing circuit determines a degree of coupling between the user's ear and the transducer and adjusts the adaptive cancellation of the ambient sounds to prevent erroneous and possibly disruptive generation of the anti-noise signal if the degree of coupling lies either below or above a range of normal operating ear contact pressure.
Abstract:
An integrated circuit audio processor having an internal-oscillator generated intermediate frequency reference provides for operation of an audio processor without requiring an external master clock. Input audio streams are sample-rate converted to an intermediate sample rate derived from the internal oscillator, which may be an LC oscillator. One or more output audio streams are generated from the one or more input audio streams at the intermediate sample rate and are converted from the intermediate sample rate to corresponding output sample rates. A divider generates the intermediate sample rate from the oscillator output, and is programmed to control the intermediate sample rate to ensure that the intermediate sample rate is in the proper range for operation of the integrated circuit. The divider can be programmed to accommodate changes in process, voltage and/or temperature of the IC, so that the intermediate sample rate is maintained near an expected frequency.
Abstract:
A personal audio device, such as a wireless telephone, includes noise canceling circuit that adaptively generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone may also be provided proximate the speaker to measure the output of the transducer in order to control the adaptation of the anti-noise signal and to estimate an electro-acoustical path from the noise canceling circuit through the transducer. A processing circuit that performs the adaptive noise canceling (ANC) function also either adjusts the frequency response of the anti-noise signal with respect to the reference microphone signal, and/or by adjusting the response of the adaptive filter independent of the adaptation provided by the reference microphone signal.
Abstract:
A personal audio device, such as a wireless telephone, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone is also provided proximate the speaker to estimate an electro-acoustical path from the noise canceling circuit through the transducer. A processing circuit determines a degree of coupling between the user's ear and the transducer and adjusts the adaptive cancellation of the ambient sounds to prevent erroneous and possibly disruptive generation of the anti-noise signal if the degree of coupling lies either below or above a range of normal operating ear contact pressure.
Abstract:
Programming circuitry 200 includes a terminal 202 for coupling to a resistor having a resistance representing a corresponding programming state. Current control circuitry 204/205 selectively passes at least one exponentially weighted current through terminal 202. Detection Circuitry 201 then determines the resistance of the resistor from the at least one exponentially weighted current to determine the programming state.
Abstract:
A direct digital synthesis (DDS) hybrid phase-lock loop for low-jitter synchronization provides a mechanism for generating a low-jitter clock from a timing reference that has a high jitter level. A DDS circuit provides a clock output and has an input for receiving a rational number. The rational number represents a ratio between the frequency of the clock output and the frequency of another stable clock provided to the circuit. In one implementation, a phase output of the DDS circuit is compared to a phase determined from an incoming timing reference and in another implementation, the low-jitter clock output is utilized to generate a phase number via a counter that is clocked by the clock output and captured by the timing reference.
Abstract:
An integrated circuit (IC) having an internal power supply voltage step down circuit provides efficiency while requiring a minimum of external terminals. In a first operating mode, a storage capacitor is charged from the power supply return of a group of circuits, while the group of circuits is powered from an input power supply voltage provided to the IC. In a second operating mode, the group of circuits is powered from the storage capacitor. The step-down circuit provides for halving the input power supply voltage, but multiple storage capacitors and additional operating modes can be provided for voltage division by greater factors. A sensing circuit can be employed to sense the voltage across the storage capacitor(s) and in response, select the operating mode, providing hysteretic control of the voltage supplied to the group of circuits.
Abstract:
A personal audio device, such as a wireless telephone, includes an adaptive noise canceling (ANC) circuit that generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cancel ambient audio sounds. A processing circuit implements one or more adaptive filters that control the generation of the anti-noise signal. At least one of the adaptive filters is partitioned into a first portion having a fixed frequency response and a second portion having a variable frequency response. The partitioned filter may be an adaptive filter that generates the anti-noise signal directly from the reference microphone signal. An error microphone may be provided to measure the ambient sounds and transducer output near the transducer, and a secondary path adaptive filter included to generate an error signal from the error microphone signal, which may be partitioned, alone or in combination.