Abstract:
The invention relates to a plasmon resonance optical detection device including a stack of layers comprising: a metal layer based on a noble metal that will generate said plasmon, a layer of dielectric material, at least one first semiconductor bond layer placed between said metal layer and said dielectric layer, said semiconductor layer covering a face of the metal layer.
Abstract:
The invention relates to an optical filtering structure consisting of a set of at least two elementary optical filters (R, V, B), an elementary optical filter being centered on an optimum transmission frequency, characterized in that it comprises a stack of n metal layers (m1, m2, m3) and n substantially transparent layers (d1, d2, d3) which alternate between a first metal layer (m1) and an nth substantially transparent layer (d3), the n metal layers (m1, m2, m3) each having a constant thickness and at least one substantially transparent layer having a variable thickness which sets the optimum transmission frequency of an elementary optical filter, n being an integer larger than or equal to 2.
Abstract:
A micromonochromator is formed on a substrate and includes a diffraction device (6) associated with an entry that includes at least one entry point and an exit that includes at least one exit point. A mobile arrangement of light guidance (2-20, 4-26) is associated with the entry or the exit or both, and a recovery device (23) is provided by the exit. The mobile arrangement includes at least one mobile beam integrated in the substrate and equipped with at least one light guide. The mobile beam is able to sweep the entry and/or exit in a continuous manner.
Abstract:
This device comprises a planar input area (4), a planar output area (6), a microguides array (2) laid out between these areas, means (8) of inputting a light beam associated with the input area and means (10) of outputting a light beam associated with the output area. According to the invention, at least two pieces (12, 16, 22) are formed, one comprising one part of at least one of the areas and the corresponding associated means, the other comprising the other part of this area and the other components of the device, and the pieces are added on so as to form the complete device and to adjust the wave length of this device. Application to optical telecommunications and optical spectrometry.
Abstract:
A support designed for hybrid optoelectronics, including at least one integrated optical guide and including a substrate on which the optical guide has been created by depositing a suitable material on the substrate to create a lower confinement layer, a guide core layer, and an upper confinement layer. The optical guide is designed to be optically connected to an optoelectronic component mounted on the support, in which the support positions the component to ensure its optical alignment with the optical guide. The support includes abutments located at the core level, or defined in a confinement layer in relation to the core layer, to ensure the vertical positioning of the component. The invention also relates to processes for producing the support.
Abstract:
An optical filter for filtering an electromagnetic radiation of variable angle of incidence, includes a stack of at least one dielectric or semi-conductor layer arranged between two partially reflective layers, said stack defining a set of Fabry-Pérot cavities set to a predetermined wavelength. The average refractive index of the dielectric or semi-conductor layer is variable in a plane orthogonal to the direction of the stack so as to compensate the effects of the variation in the angle of incidence of the electromagnetic radiation on the transmission spectrum of the cavities.
Abstract:
The invention relates to an optical filter structure composed of at least two adjacent elementary optical filters, an elementary optical filter being centred on an optimum transmission frequency, characterised in that it comprises a stack of n metallic layers (m1-m3) and n−1 dielectric layers (d2-d3), each metallic layer alternating with a dielectric layer such that the central layer in the stack is a metallic layer (m2), each of the layers in the stack having a constant thickness except for the central metallic layer for which the varying thickness fixes the optimum transmission frequency of an elementary filter.
Abstract:
Filtering matrix structure comprising at least three color filters and a plurality of near Infrared filters, each one of the color filters and the near Infrared filters having an optimum transmission frequency, wherein the filtering matrix structure is made of n metal layers (m1, m2, m3) and n substantially transparent layers (d1, d2, d3) which alternate between a first metal layer (m1) and an nth substantially transparent layer (d3), each of the n metal layers (m1, m2, m3) having a constant thickness and at least one substantially transparent layer having a variable thickness which sets the optimum transmission frequency of each color filter and each near Infrared filter, n being an integer larger than or equal to 2.Application to 3D mapping and imaging.
Abstract:
The invention relates to an optical filter structure composed of at least two adjacent elementary optical filters, an elementary optical filter being centred on an optimum transmission frequency, characterised in that it comprises a stack of n metallic layers (m1-m3) and n−1 dielectric layers (d2-d3), each metallic layer alternating with a dielectric layer such that the central layer in the stack is a metallic layer (m2), each of the layers in the stack having a constant thickness except for the central metallic layer for which the varying thickness fixes the optimum transmission frequency of an elementary filter.
Abstract:
A device for measuring the dimensional or structural characteristics of an object. A detector forms an optical Fourier transform image of an elemental surface of the object in an image focal plane. A processor produces data relating to at least one dimensional and/or structural characteristic of the object from the information provided by the detector.