Abstract:
This invention relates to microfluidic systems and more particularly to methods and apparatus for accessing the contents of micro droplets (114) in an emulsion stream. A method of accessing the contents of a droplet (114) of an emulsion in a microfluidic system, the method comprising: flowing the emulsion alongside a continuous, non-emulsive stream of second fluid (118) to provide an interface (120) between said emulsion and said stream of second fluid (118); and in embodiments applying one or both of an electric (112a, 112b) and magnetic field across said interface (120) to alter a trajectory of a said droplet (114) of said emulsion to cause said droplet to coalesce with said stream of second fluid (118); and accessing said contents of said droplet (114) in said second stream (118).
Abstract:
This invention relates to microfluidic systems and more particularly to methods and apparatus for accessing the contents of micro droplets (114) in an emulsion stream. A method of accessing the contents of a droplet (114) of an emulsion in a microfluidic system, the method comprising: flowing the emulsion alongside a continuous, non-emulsive stream of second fluid (118) to provide an interface (120) between said emulsion and said stream of second fluid (118); and in embodiments applying one or both of an electric (112a, 112b) and magnetic field across said interface (120) to alter a trajectory of a said droplet (114) of said emulsion to cause said droplet to coalesce with said stream of second fluid (118); and accessing said contents of said droplet (114) in said second stream (118).
Abstract:
A method for monitoring torque in a gear train includes coincidently determining angles of rotation of first and second rotationally coupled members of the gear train. Each of the members employs a respective rotational position sensor. Each of said angles of rotation are determined based upon times corresponding to a last signal pulse, a next-to-last signal pulse, and a total quantity of signal pulses generated by the respective rotational position sensor during a current sampling interval. A twist angle corresponding to a difference between the angles of rotation of the first and second rotationally coupled members of the gear train is determined, and torque corresponding to the twist angle is calculated.
Abstract:
A flow cell for a microfluidic device can include a chamber, first microfluidic entry and exit channels, second microfluidic entry and exit channels, a first electrode, and a second electrode. A microfluidic device can include a microfluidic channel, a laser to excite fluorescent material, and a detector to detect fluorescence emission. Methods of merging a droplet from an emulsion in to a second stream of fluid and of detecting a content of a droplet in a stream are further disclosed.
Abstract:
A flow cell for a microfluidic device can include a chamber, first microfluidic entry and exit channels, second microfluidic entry and exit channels, a first electrode, and a second electrode. A microfluidic device can include a microfluidic channel, a laser to excite fluorescent material, and a detector to detect fluorescence emission. Methods of merging a droplet from an emulsion in to a second stream of fluid and of detecting a content of a droplet in a stream are further disclosed.
Abstract:
A method for monitoring torque in a gear train includes coincidentally determining angles of rotation of first and second rotationally coupled members of the gear train. Each of the members employs a respective rotational position sensor. Each of said angles of rotation are determined based upon times corresponding to a last signal pulse, a next-to-last signal pulse, and a total quantity of signal pulses generated by the respective rotational position sensor during a current sampling interval. A twist angle corresponding to a difference between the angles of rotation of the first and second rotationally coupled members of the gear train is determined, and torque corresponding to the twist angle is calculated.