Abstract:
Methods for creating high quality alarms raise EMS operator awareness to abnormal conditions in monitored assets across multiple sites in a single EMS software platform. An embodiment includes steps for accessing an alarm designer software tool that contains a library of alarm definitions and the ability to create new alarm definitions, clone and edit existing alarm definitions, lock alarm definitions and delete alarm definitions. Applicable data is defined using channel attributes identifying which channel or channels associated with the multiple monitored sites are to be evaluated for alarming conditions. The alarm frequency, trigger conditions, pending open duration, close conditions, and pending close duration are also defined. Alarms can trigger upon one or more channels' behavior over periods of time and conditional relationships between multiple channels. Close conditions for an alarm can be, but are not required to be, the resolution of the trigger conditions.
Abstract:
A thermostat with voltage and current sensing capability is coupled directly to an HVAC unit and provides low latency failure detection and control using an on-board CPU. The thermostat can be configured to detect failure modes using current and voltage sensing and to make autonomous decisions to control the HVAC in response to such measurements.
Abstract:
Methods and systems are provided for optimizing the control of energy supply and demand. An energy control unit includes one or more algorithms for scheduling the control of energy consumption devices on the basis of variables relating to forecast energy supply and demand. Devices for which energy consumption can be scheduled or deferred are activated during periods of cheapest energy usage. Battery storage and alternative energy sources (e.g., photovoltaic cells) are activated to sell energy to the power grid during periods that are determined to correspond to favorable cost conditions.
Abstract:
Systems and methods are provided for controlling a setback mode of a power-consuming device, and for controlling setback recovery of power-consuming devices, in order to make setback and setback recovery more dynamic based on current environmental parameters and previous observed operating parameters, in order to enable more efficient operation of power-consuming devices resulting in reduced energy costs and increased power efficiency.
Abstract:
Methods and systems are provided for optimizing the control of energy supply and demand. An energy control unit includes one or more algorithms for scheduling the control of energy consumption devices on the basis of variables relating to forecast energy supply and demand. Devices for which energy consumption can be scheduled or deferred are activated during periods of cheapest energy usage. Battery storage and alternative energy sources (e.g., photovoltaic cells) are activated to sell energy to the power grid during periods that are determined to correspond to favorable cost conditions.
Abstract:
Methods for creating high quality alarms raise EMS operator awareness to abnormal conditions in monitored assets across multiple sites in a single EMS software platform. An embodiment includes steps for accessing an alarm designer software tool that contains a library of alarm definitions and the ability to create new alarm definitions, clone and edit existing alarm definitions, lock alarm definitions and delete alarm definitions. Applicable data is defined using channel attributes identifying which channel or channels associated with the multiple monitored sites are to be evaluated for alarming conditions. The alarm frequency, trigger conditions, pending open duration, close conditions, and pending close duration are also defined. Alarms can trigger upon one or more channels' behavior over periods of time and conditional relationships between multiple channels. Close conditions for an alarm can be, but are not required to be, the resolution of the trigger conditions.
Abstract:
An energy management system having a centralized site controller is provided with thermostats in multiple zones, each thermostat having the capability of acting as a remote terminal to the controller. Each thermostat provides an interface to the site controller while simultaneously acting as the thermostat for each zone. The thermostat displays information concerning the state of the building's lighting and HVAC systems for any zone and allows the local user to initiate local overrides of set points. The central site controller determines how many thermostats are enabled with a terminal mode, including the full extent of their read and write permissions on other zones. The override requests are received by the central controller and merged with the settings for the current control algorithms. After a preconfigured time, the central controller reinstates the current control algorithm. The system can be shut down using a thermostat in remote terminal mode with appropriate permission form the centralized site controller. Further, system status changes are sent periodically to the remote thermostats for display and the remote thermostat terminals are polled periodically for change requests. As a result, the thermostat can be activated in run time, and endowed with terminal mode while still performing as a thermostat.
Abstract:
Disclosed is a computerized method for dispatching energy from distributed resources in a discharge event so that the energy stored in individual devices is levelized, or so that an operator request is met. Evaluation of event parameters may be deferred. The method may be utilized to dispatch energy from plug-in electric vehicles. Systems and methods to account for electricity dispatched to or from electric vehicles are disclosed. Systems and methods for incentivizing consumers to participate in a dispatch event or curtail energy use are disclosed.
Abstract:
A system that enables power flow management for electrical devices, such as electric vehicles. Power flow managers can coordinate charging activities. Power flow decisions may be based on site-level information. Power flow management strategies may be optimized. Power spikes may be avoided by using safe failure modes. Generation stacks may be used for reducing cost. AGC commands are used to control power resources. Power regulation are apportioned to power resources, and power regulation ranges may be determined. Power flow strategies are implemented in response to changes in intermittent power flow. Locations of devices may be determined using network fingerprints. Power flow measurements are determined, and AC power flows are inferred from DC power flows. Network traffic consumption are minimized. Communication protocols are translated. Enhanced vehicle communications are provided that communicate to vehicle subsystems, that arbitrate smart charge points, and that use existing hardware, non-specific hardware, or control extensibility systems.
Abstract:
A system that enables power flow management for electrical devices, such as electric vehicles. Power flow managers can coordinate charging activities. Power flow decisions may be based on site-level information. Power flow management strategies may be optimized. Power spikes may be avoided by using safe failure modes. Generation stacks may be used for reducing cost. AGC commands are used to control power resources. Power regulation are apportioned to power resources, and power regulation ranges may be determined. Power flow strategies are implemented in response to changes in intermittent power flow. Locations of devices may be determined using network fingerprints. Power flow measurements are determined, and AC power flows are inferred from DC power flows. Network traffic consumption are minimized. Communication protocols are translated. Enhanced vehicle communications are provided that communicate to vehicle subsystems, that arbitrate smart charge points, and that use existing hardware, non-specific hardware, or control extensibility systems.