摘要:
A medical effector system comprised of a bedside unit and a procedure unit. The bedside unit contains a series of connection points for receiving inputs from a series of patient monitors. The procedure unit contains a patient monitoring and medical effector program, and a drug delivery pump or magnetic flux generator capable of delivering therapeutic energy to a patient. The medical effector system contains the capability to issue and receive a request from a non-sedated patient, issue and receive a request from a sedated patient and then to calculate a time difference. The medical effector program operates the pump or magnetic flux generator based upon at least some of the patient outputs and program inputs including a calculated time difference. A removable umbilical cable connects the two units and allows the output of the patient monitors as well as other information to travel between the two units.
摘要:
An air-bubble-monitoring medication assembly includes a drug infusion subassembly having a tube for administering therein a liquid to a patient, a bubble-size determinator which is positioned to sense an air bubble entrained in the liquid in the tube and which determines the volume of the air bubble, and an analyzer. The analyzer logs the time the detector senses an air bubble and the volume of the air bubble, calculates a running sum of a total air volume of all air bubbles sensed over a time interval, compares the running sum with a preselected limit, and generates an output when the running sum exceeds the preselected limit. The medical system additionally includes a controller assembly which determines a delivery schedule for administering the liquid and which controls the drug infusion subassembly to administer the liquid in accordance with the determined delivery schedule. The method performs the analyzer functions.
摘要:
Disclosed is an interface between a drug delivery cassette and a medical effector system. The cassette may be mounted to the medical effector system in such a way that a fluid tube located on the cassette is positioned adjacent to a pump located on the medical effector system. The medical effector system may purge the fluid line of air by activating the pump and forcing fluid through the fluid line until a sensor positioned to monitor the fluid line indicates that fluid and not air is present in the tube. To prevent air purging of the fluid tube when connected to the patient, the medical effector system prohibits air purging unless the drug delivery end portion of the fluid tube is in a designated storage site located on the cassette. This is accomplished with a position sensor at the storage site that monitors the position of the fluid tube.
摘要:
An air-bubble-monitoring medication assembly includes a drug infusion subassembly having a tube for administering therein a liquid to a patient, a bubble-size determinator which is positioned to sense an air bubble entrained in the liquid in the tube and which determines the volume of the air bubble, and an analyzer. The analyzer logs the time the detector senses an air bubble and the volume of the air bubble, calculates a running sum of a total air volume of all air bubbles sensed over a time interval, compares the running sum with a preselected limit, and generates an output when the running sum exceeds the preselected limit. The medical system additionally includes a controller assembly which determines a delivery schedule for administering the liquid and which controls the drug infusion subassembly to administer the liquid in accordance with the determined delivery schedule. The method performs the analyzer functions.
摘要:
Disclosed is a patient monitoring and drug delivery system and associated methods for use during diagnostic, surgical or other medical procedures. The functionality of the invention enables many time consuming and laborious activities to be minimized or moved to a part in the procedure where time is not as critical. The invention is capable of increasing practice efficiency in patient care facilities through system architecture and design into two separate units. A patient unit receives input signals from patient monitoring connections and outputs the signals to a procedure unit. The procedure unit is operational during the medical procedure and controls the delivery of drugs to the patient.