Abstract:
Chemical process accelerator systems comprising viscid fluid Taylor Vortex Flows (98, 50a) with high-shear-rate laminar Circular Couette Flows (58) in contact with catalysts (92, 92′, 30, 32, 32f, 32g, 36, 40, 44, 45, 46, 47, 48), catalytic compositions and structures in chemical reactors and electrochemical cells (e.g. fuel cells, fuel reformers) are disclosed.
Abstract:
A system for separating at least one constituent from a liquid suspension such as blood induces high velocity flow by viscous drag about the circumference of a spinner having a filtration membrane with pore size selected for the desired constituent. The high velocity circumferential flow is bounded by a spaced apart shear wall, with a spacing selected relative to the diameter of the spinner and its rotational velocity, also with respect to the viscosity of the suspension, to establish a flow within the shear gap, as substantial centrifugal forces are exerted upon the suspension. Under these conditions, filtrate in contact with the membrane is replenished, and filtrate passes through the membrane with minimal adverse effects from deposition and concentration polarization, and with high efficiency because of high shear levels that are maintained. The filtrate is collected within the interior of the spinner in a conduit system and passed to an outlet orifice.
Abstract:
Electrochemical cells (10), such as fuel cells (12) and fuel reformers (14), with rotating elements or electrodes (34, 24) that generate Taylor Vortex Flows (28, 50) and Circular Couette Flows (58) in fluids such as electrolytes and fuels are disclosed.
Abstract:
A system for separating at least one constituent from a liquid suspension such as blood induces high velocity flow by viscous drag about the circumference of a spinner having a filtration membrane with pore sized selected for the desired constituent. The high velocity circumferential flow is bounded by a spaced apart shear wall, with a spacing selected relative to the diameter of the spinner and its rotational velocity, also with respect to the viscosity of the suspension, to establish a flow within the shear gap, as substantial centrifugal forces are exerted upon the suspension. Under these conditions, filtrate in contact with the membrane is replenished and filtrate passes through the membrane with minimal adverse effects from deposition and concentration polarization, and with high efficiency because of high shear levels that are maintained. The filtrate is collected within the interior of the spinner in a conduit system and passed to an outlet orifice.
Abstract:
A system for separating at least one constituent from a liquid suspension such as blood induces high velocity flow by viscous drag about the circumference of a spinner having a filtration membrane with pore sized selected for the desired constituent. The high velocity circumferential flow is bounded by a spaced apart shear wall, with a spacing selected relative to the diameter of the spinner and its rotational velocity, also with respect to the viscosity of the suspension, to establish a flow within the shear gap, as substantial centrifugal forces are exerted upon the suspension. Under these conditions, filtrate in contact with the membrane is replenished and filtrate passes through the membrane with minimal adverse effects from deposition and concentration polarization, and with high efficiency because of high shear levels that are maintained. The filtrate is collected within the interior of the spinner in a conduit system and passed to an outlet orifice.
Abstract:
Galvanic electrochemical cells (100, 300, 700, 900) for converting chemical energy into electrical energy, such as batteries, flow cells and fuel cells with a cylindrical rotating filter (120X, 326, 726, 910) having ion-porous (120P, 326P, 726P, 910P) and ion-non-porous filter (120N, 326N, 726N, 910N) for use with both thixotropic and non-conducting electrolytes that generates fluid flows in electrolytes between static cylindrical current collector segments (106, 304X, 306X, 710X, 902X; 108, 314X, 316X, 712X, 906) and the filter (120, 326, 726, 910) are disclosed that generate electric currents varying in amplitude that can be converted into alternating current electricity.
Abstract:
A cross-flow electrochemical cell for producing electricity is disclosed that incorporates means for cross-flow pumping of electrolyte through both anode and cathode electrodes in the same direction to achieve markedly higher discharging and charging currents. Cross-flow pumping enabling use of thick mesh electrodes comprising scaffolds impregnated with high-surface-area metal nanoparticles and having high porosity are also taught.
Abstract:
Direct reaction fuel cells (10) with cross-flow of an electrolyte mixture through thick, porous electrodes (12, 18) that contain a mixture of catalyst particles and that rotate to generate Taylor Vortex Flows (54) and Circular Couette Flows (56) in electrolyte chambers (24) are disclosed.
Abstract:
Direct reaction fuel cells (10) and fuel cell batteries (200) with rotating electrodes (18) that generate Taylor Vortex Flows (54) and Circular Couette Flows (56) in electrolyte chambers (24) are disclosed.