摘要:
There is provided a magneto-optical recording medium and a magneto-optical recording device which greatly reduce the amount of time and light (electric) energy required for writing and reading of data while maintaining high-density recording and which can reduce the size and energy consumption of the magneto-optical recording device. The magneto-optical recording medium contains a recording layer (23) formed of a photoinduced-magnetic material thin film, and a memory layer (24) formed of a ferromagnetic thin film having perpendicular magnetic anisotropy, wherein the recording layer is subjected to photoinduced magnetization in which magnetism is produced directly through irradiation with light.
摘要:
The present invention is a hetero superlattice pn junction. In particular, the invention combines n and p type superlattices into a single pn junction having a bandgap sufficient to create high frequency (i.e. blue or higher) light emission. Individual superlattices are formed using a molecular beam epitaxy process. This process creates thin layers of well material separated by thin layers of barrier material. The well material is doped to create carrier concentrations and the barrier materials are chosen in combination with the thickness of the well materials to adjust the effective bandgap of the superlattice in order to create an effective wide bandgap material. The barrier material for the n and p type superlattices is different from the material used to form either of the two types of well layers. A particular embodiment of the present invention forms a first superlattice from n type doped ZnSe well layers and undoped ZnMnSe barrier layers and forms a second superlattice from p type doped ZnTe well layers and undoped ZnMnSe barrier layers. The first and second superlattices are merged into a hetero superlattice pn junction. The thickness and composition of the individual well and barrier layers can be modified to adjust the effective bandgap of the pn junction. Therefore, a wide bandgap diode is formed from previously incompatible materials.
摘要:
A method and device are disclosed for converting electronic signals into magnetic signals in DMS materials by generating carriers in selected regions of the materials. The carriers comprise either holes or electrons and the concentration of the carriers in the DMS device is electronically and consequently reversibly controlled by varying the voltage supplied to the device. A carrier concentration-induced conversion of the DMS device is obtained in an area defined by an electrode so that the device of a selected area of the device is changed from one magnetic state to another magnetic state. A superexchange interaction through the carriers in the host DMS material causes a transition from one magnetic phase to another when the carrier concentration exceeds a critical value.