摘要:
An electronic circuit having a semiconductor device is provided that includes a heterostructure, the heterostructure including a first layer of a compound semiconductor to which a second layer of a compound semiconductor adjoins in order to form a channel for a 2-dimensional electron gas (2DEG), wherein the 2-dimensional electron gas is not present. In aspects, an electronic circuit having a semiconductor device is provided that includes a III-V heterostructure, the III-V heterostructure including a first layer including GaN to which a second layer adjoins in order to form a channel for a 2-dimensional electron gas (2DEG), and having a purity such that the 2-dimensional electron gas is not present. It is therefore advantageous for the present electronic circuit to be enclosed such that, in operation, no light of wavelengths of less than 400 nm may reach the III-V heterostructure and free charge carriers may be generated by these wavelengths.
摘要:
A memory cell comprises a nanowire structure comprising a channel region and source/drain regions of a transistor. The nanowire structure also comprises as first conductor of a capacitive device as a vertical extension of the nanowire structure.
摘要:
The long-missing polarization-induced two-dimensional hole gas is finally observed in undoped Group III nitride semiconductor structures and in undoped Group II or Group III oxide semiconductor structures. Experimental results providing unambiguous proof that a 2D hole gas in GaN grown on AlN does not need acceptor doping, and can be formed entirely by the difference in the internal polarization fields across the semiconductor heterojunction are presented.
摘要:
The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
摘要:
The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
摘要:
According to one embodiment, a field-effect transistor includes a source region of a first conductivity type, a drain region of the first conductivity type and a channel region of the first conductivity type between the source region and the drain region, the source region, the drain region and the channel region being disposed in a polycrystalline semiconductor layer; a first layer including an amorphous semiconductor layer disposed on the channel region; a gate insulating layer disposed on the first layer; and a gate electrode disposed on the gate insulating layer.
摘要:
A method for obtaining a heterogeneous substrate intended for use in the production of a semiconductor comprises the following steps: (a) obtaining a first substrate (2) made from a type II-VI or type III-V material and a second substrate (1), each substrate being substantially planar and each substrate having a pre-determined surface area; (b) grinding a non-through recess (10) into the second substrate (1), the surface area of said recess being greater than the surface area of the first substrate, such that the first substrate can be housed in the recess; (c) depositing a bonding material (15) in the recess (10); (d) depositing the first substrate (2) in the recess (10) of the second substrate and securing the first substrate in the second substrate at a temperature below 300° C.; and (e) leveling the first and second substrates in order to obtain a heterogeneous substrate having a substantially planar face (30).
摘要:
Embodiments are directed to engineering a structure, comprising: measuring energy eigenstates of a Hamiltonian, predicting a time evolution of a combination of two energy eigenstates based on the measurement, and creating an entangled quantum state for two coefficients of the two energy eigenstates such that an associated wavefunction is encouraged to undergo the predicted time evolution.
摘要:
The present disclosure provides systems, processes, articles of manufacture, and compositions that relate to core/shell semiconductor nanowires. Specifically, the disclosure provides a novel semiconductor material, CdSe/ZnS core/shell nanowires, as well as a method of preparation thereof. The disclosure also provides a new continuous flow method of preparing core/shell nanowires, including CdSe/CdS core/shell nanowire and CdSe/ZnS core/shell nanowires.
摘要:
The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.