Abstract:
A high pressure discharge lamp lighting device comprising an inverter, an igniter, a controller, a pulse voltage detection circuit, and the starting pulse voltage regulation circuit. The inverter applies a lighting voltage to a high pressure discharge lamp. The controller applies the starting pulse voltage generated by the igniter to the high pressure discharge lamp. The pulse voltage detection circuit is configured to detect a voltage indicative of the starting pulse voltage to output a detection signal. The starting pulse voltage regulation circuit is configured to regulate the starting pulse voltage to a desired value of the starting pulse voltage on the basis of the detection signal. The pulse voltage detection circuit is configured to detect either one of the voltage developed in the specified circuit component of the igniter and the starting pulse voltage as the voltage indicative of the voltage indicative of the starting pulse voltage.
Abstract:
A high pressure discharge lamp lighting device comprising an inverter, an igniter, a controller, a pulse voltage detection circuit, and the starting pulse voltage regulation circuit. The inverter applies a lighting voltage to a high pressure discharge lamp. The controller applies the starting pulse voltage generated by the igniter to the high pressure discharge lamp. The pulse voltage detection circuit is configured to detect a voltage indicative of the starting pulse voltage to output a detection signal. The starting pulse voltage regulation circuit is configured to regulate the starting pulse voltage to a desired value of the starting pulse voltage on the basis of the detection signal. The pulse voltage detection circuit is configured to detect either one of the voltage developed in the specified circuit component of the igniter and the starting pulse voltage as the voltage indicative of the voltage indicative of the starting pulse voltage.
Abstract:
A discharge lamp lighting control device (100) having a DC power converter, a power factor improving power converter (1), a polarity reversing circuit (2), a starter circuit (3), and a controller (4). The power factor improving power converter 1 includes a switching device S, a power factor improver, and a power converter. The power factor improver operates to smooth a rectified voltage by storing energy in a first inductive device L1 and by discharging energy from a second inductive device L2, in which the first and second inductive devices are magnetically coupled together. The storing and discharging is performed by turning ON and OFF the switching device S. A predetermined DC voltage is converted by energy stored and discharged by a third inductive device L3 in response to the turning ON and OFF of the switching device S.
Abstract:
A luminaire includes a lamp connected at one electrode to an ordinary current loop and at the other electrode to the other current loop which is branched into more than two which are extending along two opposite sides of the lamp. Magnetic fields produced thus in the branched loops act to cancel each other, and any noise occurring due to generation of the magnetic field can be remarkably reduced.
Abstract:
A lighting device for a high-pressure discharge lamp includes an inverter circuit for converting a DC voltage into an AC voltage using a pair of switching elements. The switching elements have a switching frequency for starting the high-pressure discharge lamp that is higher than a resonance frequency of a series resonance circuit connected in parallel with the discharge lamp. However, in a lighted state of the discharge lamp, the switching frequency is lower than the resonance frequency of the resonance circuit and is within a frequency range where acoustic resonance does not occur. The lighted state of the high-pressure discharge lamp is maintained by a voltage across a capacitor in the series resonance circuit.
Abstract:
A discharge lamp lighting control device (100) having a DC power converter, a power factor improving power converter (1), a polarity reversing circuit (2), a starter circuit (3), and a controller (4). The power factor improving power converter 1 includes a switching device S, a power factor improver, and a power converter. The power factor improver operates to smooth a rectified voltage by storing energy in a first inductive device L1 and by discharging energy from a second inductive device L2, in which the first and second inductive devices are magnetically coupled together. The storing and discharging is performed by turning ON and OFF the switching device S. A predetermined DC voltage is converted by energy stored and discharged by a third inductive device L3 in response to the turning ON and OFF of the switching device S.
Abstract:
A high-intensity discharge lamp operating device includes a power supplier configured to supply power to a high-intensity discharge lamp, a memory containing a starter power data set, an identifying power data set and steady power data sets, a detector configured to detect voltage applied to the high-intensity discharge lamp, a power supplier controller configured to control the power supplier to control the power according to the starter power data set, the identifying power data set and one of the steady power data sets, a lamp power identifier configured to identify a lamp power of the high-intensity discharge lamp while the power supplier controller controls the power according to the identifying power data set after the starter power data set, and a data set selection unit configured to select one steady power data set based on the identified lamp power, and the power supplier controller is configured to control the power according to the steady power data set.
Abstract:
Circuit and method for driving a gas discharge lamp having a bridge converter. The bridge converter includes a plurality of switches. A controller turns on and off the plurality of switches. The circuit further includes a zero current sensor circuit. The controller senses at least one voltage differential to control a length of time that at least one of the at least four switches is on. The controller controls when at least one of the plurality of switches is turned on in accordance with an output of the zero cross sensor.
Abstract:
A high pressure discharge lamp lighting device in this invention comprises a converter, an inverter, an igniter, a controller, and a pulse voltage detection circuit. The converter outputs the direct current voltage. The inverter converts the direct current voltage into the lighting voltage which is alternating current voltage, and applies the lighting voltage to the high pressure discharge lamp through an output terminal. The igniter is configured to output the pulse voltage superimposed on the lighting voltage, whereby the starting voltage is applied to the high pressure discharge lamp. The controller is configured to control the igniter to allow the igniter to superimpose the pulse voltage on the lighting voltage. The pulse voltage detection circuit detects the starting voltage to output the detection signal. The starting voltage regulation circuit regulates the starting voltage to the desired voltage value of the voltage on the basis of the detection signal.
Abstract:
A high-voltage discharge lamp lighting device provides a starting pulse voltage sufficient to turn on a high-voltage discharge lamp having terminal wire connections of variable length. A power conversion circuit is coupled to a commercial AC power source input and rectifies the AC input into a predetermined DC voltage output. A charging capacitor is coupled to the power conversion circuit. A full bridge circuit is coupled to the power conversion circuit and the charging capacitor and provides a rectangular wave AC output signal to a transformer primary winding circuit of at least a capacitor, a single switching element and a primary winding of a transformer. A low pulse voltage is induced in the primary winding and a transformer secondary winding is connected on one end to the high-voltage discharge lamp, wherein the low pulse voltage is stepped up to a high pulse voltage and applied to the high-voltage discharge lamp. A reference voltage is generated in a reference transformer winding representative of the high pulse voltage. A starting pulse equivalent value detection circuit is connected to the reference winding and detects a value associated with the reference voltage. A control circuit receives said value from said detection circuit, and variably controls at least one of a frequency of the single switching element or an ON impedance of the single switching element in association with said value, wherein said frequency or ON impedance is further associated with a starting pulse voltage sufficient to start the high-voltage discharge lamp.