摘要:
A resin container has a bottom structure which has a central recessed portion containing substantially no crystal, a marginal raised portion crystallized by molecular orientation, and an intermediate ring-shaped portion crystallized to have spherulite-like crystals.The bottom structure highly improves the heat-resistance at the intermediate portion, while maintaining the central recessed portion at a good impact-resistance.
摘要:
A heat-resistant container forming method includes a step of thermally shrinking a primary blow molded article in a heating furnace before secondary blow molding the primary blow molded article into a final product or container. Into the furnace, hot air which flows along the longitudinal direction of the first blow molded article and whose temperature enough to facilitate crystallization of the primary blow molded article. The primary blow molded article is thermally shrunk by exposing the entire circumferential surface of a barrel of the primary blow article to the hot air and by blowing the hot air longitudinally along the primary blow molded article to heat the barrel circumferentially uniformly. Since hot air touches the barrel as flowing longitudinally thereof, it is possible to increase the heat conductivity of boundary film of the primary blow molded article, without increasing the hot air temperature too high, so that temperature rise of the primary blow molded article is facilitated.
摘要:
This invention provides a biaxially oriented container which can be very easily molded by extrusion or injection stretch blow molding and which exhibits satisfactory hat resisting property and pressure resisting property even if the content of glass fibers is less than 10 weight %.
摘要:
An apparatus for blow-molding PET containers suitable for hot-filling includes a first machine having an injection station, a thermal conditioning station, a primary blow-molding station, and an exit station. A second machine includes the oven chambers and a final blow-molding station. The primary article is sealed by a cap member that has a pressure relief valve connected to it to limit the internal pressure during heating, an air supply passage for final blow-molding, and a tensioning rod for insertion into the primary article and engaging a pocket in the center of the article's bottom. In some applications, it is necessary to stiffen the neck, particularly when hot-filling at about 200.degree. F. or higher, or when using a closure roll-on die or a lugged neck finish to apply a bottle cap to the final container.
摘要:
A container molding method for reducing the amount of released acetaldehyde. The method comprises a primary blow molding step of stretch-blow-molding a preform into a primary blow-molded article; an acetaldehyde reducing step of reducing the amount of acetaldehyde released from the primary blow-molded article; and a final blow molding step of stretch-blow-molding the primary blow-molded article having a reduced amount of acetaldehyde into a final container. The primary blow molding step molds the primary blow-molded article which is larger in size than the final container and which has an average wall-thickness of a stretched barrel portion equal to or less than 0.3 mm, that is smaller than the average wall-thickness of a barrel portion of the final container. The acetaldehyde reducing step heats the thin-walled barrel portion of the primary blow-molded article at a high temperature for a relatively short time. As a result, the final container having a reduced amount of acetaldehyde released from the inner wall of the final container will be molded.
摘要:
A heat-resistant container forming method includes a step of thermally shrinking a primary blow molded article in a heating furnace before secondary blow molding the primary blow molded article into a final product or container. Into the furnace, hot air which flows along the longitudinal direction of the first blow molded article and whose temperature enough to facilitate crystallization of the primary blow molded article. The primary blow molded article is thermally shrunk by exposing the entire circumferential surface of a barrel of the primary blow article to the hot air and by blowing the hot air longitudinally along the primary blow molded article to heat the barrel circumferentially uniformly. Since hot air touches the barrel as flowing longitudinally thereof, it is possible to increase the heat conductivity of boundary film of the primary blow molded article, without increasing the hot air temperature too high, so that temperature rise of the primary blow molded article is facilitated.
摘要:
A method of manufacturing a heat resistant plastic vessel including: injection molding a preform; primary stretch blow molding the preform to obtain a primary blow-mold object; heat-shrinking the primary blow-mold object; and secondary stretch blow molding the heat-shrunk object to obtain a secondary blow-mold object as a heat-resistant plastic vessel. In the primary stretch blow molding process, a concavity is formed on a body of the primary blow-mold object. The concavity has a thickness larger than the other body portion. In the heat-shrunk object, the large thickness portion has a lower heat retaining capacity than the other body portion. The heat-shrunk object then undergoes the secondary stretch blow molding process, thereby obtaining the secondary blow-mold object, which has a large thickness portion corresponding to the concavity of the primary blow-mold object to assure high mechanical strength such as buckling strength of the final product.
摘要:
A method of forming a multi-layered vessel by injection molding a multi-layered parison and subsequently blow-molding the parison to form the multi-layered vessel. The parison is formed having inner and outer wall layers and an intermediate gas barrier layer. The intermediate layer is positioned between the inner and outer wall layers such that the ratio of the wall thickness of the outer layer to that of the inner layer is most preferably in the range of 1:3.50.
摘要:
The present invention provides a multi-layered vessel whose sectional construction comprises at least a triple-layer obtained by blow or orientation blow molding an injection molded multi-layered parison, comprising a first resin forming a body, and a second resin having gas barrier properties or heat resistance more than that of the first resin, the second resin being present as an intermediate layer of the body within the first resin, the intermediate layer being smaller in wall thickness than an outer layer of the body and being one-sided toward the outer layer, the first layer being defined into an inner layer and an outer layer by the intermediate layer, the wall thicknesses of the outer layer and the inner layer being in the ratio of outer layer to inner layer, 1:1.50 or more, preferably, in the range of 1:3.50.
摘要:
A method of producing a blow-molded PET container suitable for hot-filling includes the steps of injection molding a preform, blow-molding the preform into a primary molded article larger than the desired final container, heating the primary article in a series of oven chambers while its mouth is sealed so that pressure builds within the article to thereby control shrinkage, and blow-molding the shrunken article into the desired container. The two molds are preferably heated, and the mold contact time is as long as allowed by the manufacturing process to help remove internal stresses in the article. An apparatus for carrying out the method includes a first machine having an injection station, a thermal conditioning station, a primary blow-molding station, and an exit station. A second machine includes the oven chambers and a final blow-molding station. The primary article is sealed by a cap member that has a pressure relief valve connected to it to limit the internal pressure during heating, an air supply passage for final blow-molding, and a tensioning rod for insertion into the primary article and engaging a pocket in the center of the article's bottom. In some applications, it is necessary to stiffen the neck, particularly when hot-filling at about 200.degree. F. or higher, or when using a closure roll-on die or a lugged neck finish to apply a bottle cap to the final container.