摘要:
A multiplayer perform having at least a medium or intermediate gas barrier layer is prepared in advance by the injection molding of this perform in a predetermined shape that corresponds to the shape of a finished molded product. The body portion of this perform is heated to a blow moldable temperature. The heated perform is set in a primary blow mold (12), and is blow molded in the biaxial orientation to give a primary molded intermediate (5). The primary intermediate (5) is then heated to deform it forcibly by thermal shrinkage and thereby to give the secondary molded intermediate (6). The shrunken secondary intermediate (6) is set in a secondary blow mold (13), and is subjected to the secondary blow molding in the biaxial orientation to obtain a finished molded product, which is fixed thermally to give heat history to the PET resin. As a result, the PET resin layers are given a high degree of crystallization, which serves to complement the function of the gas barrier layer or layers in such a way that the container has high and effective gas barrier properties.
摘要:
A method for producing a bottle-shaped container that is highly thermally resistant and shows an excellent shaping/shape-keeping property in a short period of time is provided. The method for producing the bottle-shaped container mainly made of polyethylene terephthalate comprises the steps of: first biaxially-oriented blow-molding a preform mainly made of polyethylene terephthalate in a first metal mold, to form a primary intermediate molded article; causing thermal contraction of the primary intermediate molded aritcle by heating the primary intermediate molded article, to form a secondary intermediate molded article; and second blow-molding the secondary intermediate molded article in a second metal mold, to form the bottle-shaped container, characterized in that in the second biaxially-oriented blow-molding step, fluid is blown into the secondary intermediate molded article to expand the secondary intermediate article, and then further fluid is blown into and circulated in the expanded article to cool the expanded article.
摘要:
The invention provides a highly heat-stable polyester container and a method of manufacturing the polyester container, which can be treated by retort sterilization at a high temperature after filling food, a drink or the like in the container and sealing off it, and which has superior heat stability enough to prevent deformation and whitening due to heat shrinkage in a bottom portion of the container even when treated by the retort sterilization. In the polyester container, a barrel portion and a bottom portion of the container are heat-set, and at least the bottom portion of the container has an endothermic peak on a DSC curve in the range of not lower than about 150° C. but not higher than a melting start point.
摘要:
A container obtained by biaxially stretch-blow-molding a resin. Except the mouth-and-neck portion, vicinities thereof and the center of the bottom portion, the container as a whole is reduced in thickness under a highly drawing condition without accompanied by whitening, and a portion constituting the bottom valley portions has an yielding load of not smaller than 25 kg/cm at 70.degree. C. The container exhibits excellent heat resistance, pressure resistance, shock resistance as well as self-standing ability.
摘要翻译:通过双轴拉伸吹塑树脂获得的容器。 除了口颈部,其附近和底部的中心之外,容器整体在高拉伸条件下的厚度减小,而不伴随着白化,构成底部谷部的部分具有屈服载荷 在70℃下不小于25kg / cm 2。容器表现出优异的耐热性,耐压性,抗冲击性以及自立能力。
摘要:
A heat-resistant container forming method includes a step of thermally shrinking a primary blow molded article in a heating furnace before secondary blow molding the primary blow molded article into a final product or container. Into the furnace, hot air which flows along the longitudinal direction of the first blow molded article and whose temperature enough to facilitate crystallization of the primary blow molded article. The primary blow molded article is thermally shrunk by exposing the entire circumferential surface of a barrel of the primary blow article to the hot air and by blowing the hot air longitudinally along the primary blow molded article to heat the barrel circumferentially uniformly. Since hot air touches the barrel as flowing longitudinally thereof, it is possible to increase the heat conductivity of boundary film of the primary blow molded article, without increasing the hot air temperature too high, so that temperature rise of the primary blow molded article is facilitated.
摘要:
Equipment for manufacturing a polyethylene terephthalate container which is capable of withstanding, without appreciable deformation, relatively severe thermal conditions. The equipment includes a first mold which is designed to shape the body of an intermediate container from the body of an amorphous polyethylene terephthalate preform to a size larger than the dimensions of the final container to be obtained. Second, the equipment includes a treatment station which itself includes a first heating device which, in one embodiment, first heats only the body section of the intermediate container to a temperature of about 160.degree. to about 240.degree. C. to rapidly shrink the body of the intermediate container and then heats the neck section while the contracted intermediate body continues to be heated to effect crystallization of the neck section and increase the crystallinity of the contracted intermediate container body. In a second embodiment, the neck and body sections are heated simultaneously. The treatment station then slowly cools the neck section while heating of the contracted intermediate container body continues. The heated intermediate container is placed in a second mold which has dimensions corresponding to the final size of the container to be obtained. In a third embodiment, after simultaneous heating of the neck and body sections in the treatment station, the neck section and the contracted intermediate container body are slowly cooled, then the contracted container body is heated with a second heating device prior to placing it in the second mold.
摘要:
Blow molding processes for the manufacture of polyethylene terephthalate (PET) containers are disclosed. The containers are capable of withstanding, without appreciable deformation, relatively severe thermal conditions encountered during processing by filling with a hot liquid or pasteurization of the contents of the container. A representative process includes the steps of blow molding the heated body of an amorphous PET preform comprising a body and a neck section having a body with dimensions greater than the dimensions of the final PET container to be formed; heating only the body of the intermediate container under specified conditions to rapidly shrink the body, thus forming a contracted body; heating the neck section to effect crystallization thereof; slowly cooling the neck section alone while heating of the contracted intermediate body continues; and blow molding the heated contracted body of the intermediate container in a second mold to its final shape and dimensions.
摘要:
A polyester container obtained by stretch-forming a preform of a thermoplastic polyester resin formed by injection forming wherein the central portion of the bottom wall is the remaining part of the gate at the time of injection forming, and is formed relatively thicker than the bottom wall surrounding the central portion, and the central portion of the bottom wall is substantially amorphous, and the bottom wall surrounding the central portion is oriented and crystallized. The container exhibits excellent heat resistance and shock resistance despite a thick portion that is the remaining portion of the injection gate is formed at the center of the bottom portion.
摘要:
Balloon especially useful for dilatation of gastrointestinal lesions have a burst pressure of at least 9 atmospheres, a diameter at 3 atmospheres of about 5 mm or more, and an average compliance over the range of from 3 atmospheres to burst of at least 3% per atmosphere. Such balloons and balloons having other combinations of burst strength, compliance and diameter may be prepared by a method wherein a tubing of a thermoplastic polymer material is radially expanded under a first elevated pressure at an elevated temperature to form the balloon at a first diameter and then annealing the balloon at a second elevated temperature and a second pressure less than the first elevated pressure for a time sufficient to shrink the formed balloon to a second diameter less than the first diameter. The thermoplastic polymer material may be a block copolymer material. Catheters bearing balloons prepared by this method have low withdrawal force requirements, especially catheters used in through-the-scope applications.
摘要:
Balloon especially useful for dilatation of gastrointestinal lesions have a burst pressure of at least 9 atmospheres, a diameter at 3 atmospheres of about 5 mm or more, and an average compliance over the range of from 3 atmospheres to burst of at least 3% per atmosphere. Such balloons and balloons having other combinations of burst strength, compliance and diameter may be prepared by a method wherein a tubing of a thermoplastic polymer material is radially expanded under a first elevated pressure at an elevated temperature to form the balloon at a first diameter and then annealing the balloon at a second elevated temperature and a second pressure less than the first elevated pressure for a time sufficient to shrink the formed balloon to a second diameter less than the first diameter. The thermoplastic polymer material may be a block copolymer material. Catheters bearing balloons prepared by this method have low withdrawal force requirements, especially catheters used in through-the-scope applications.