Abstract:
A method for forming a hemispherical silicon grain (HSG) layer on a polysilicon electrode is provided. The method is suitable for a substrate, which has a dielectric layer over the substrate with an opening to expose the substrate, and a polysilicon layer is formed over the substrate. A portion of the polysilicon layer is removed above dielectric layer other than the opening region. Each sidewall of the polysilicon layer is slanted so that a trapezoidal polysilicon base is formed. A buffer layer is formed over the trapezoidal polysilicon base. An ion implantation process is performed to form an amorphous silicon layer with sufficient depth on a top surface region of the trapezoidal polysilicon base. The buffer layer includes silicon oxide or silicon nitride. During ion implantation, oxygen or nitrogen elements can also be bombarded into the amorphous silicon layer so as to buffer the amorphous silicon layer to be re-crystallized. A selective HSG layer is formed on the trapezoidal polysilicon electrode base.
Abstract:
A method for depositing an oxide layer after spacer formation is disclosed. Owing to an oxide layer after spacer formation, therefore substantially increasing the effective thickness of spacer of the peripheral circuit. The method includes which includes a substrate on which an interior and a peripheral circuit are defined, wherein there is a gate oxide layer formed on the substrate. Sequentially an interior gate and a peripheral gate are formed. Then, N-type ions are implanted into the substrate of the interior and peripheral circuit. Consequently, conformal a second dielectric layer and a third dielectric layer are deposited above the substrate, interior gate, and peripheral gate, wherein second dielectric layer is etched to form a spacer of the interior gate and the peripheral gate. And then N.sup.+ -type ions are implanted into the substrate to form source/drain by using the peripheral gate, the spacer and a portion of the third dielectric layer that runs along the spacer as a mask. Subsequently, a blanket inter-plasma dielectric is deposited above the substrate. Finally, inter-polysilicon dielectric of the interior and peripheral circuit is etched anisotropically to form a plurality of contacts.
Abstract:
A method of manufacturing an alignment mark. A substrate having a device region and an alignment mark region is provided. The device region is higher than the alignment mark region. The device region comprises an active region. An isolation structure is formed in the substrate at the edge of the alignment mark region and a first dielectric layer is formed over a portion of the substrate at the alignment mark region, simultaneously. A conductive layer is formed over the substrate. A portion of the conductive layer is removed to expose the first dielectric layer at the alignment mark region. The remaining conductive layer is patterned to form a component at the active region. A second dielectric layer with a smooth surface is formed over the substrate to cover the component. A wire is formed on the second dielectric layer, wherein a distance between the wire and the alignment mark region is larger than a distance between the component and the alignment mark region.
Abstract:
The semiconductor wafer includes a substrate, a gate positioned on the substrate, a cap layer positioned on top of the gate, and a silicon oxide spacer positioned around both the gate and the cap layer. Firstly, a dielectric layer is formed on the semiconductor wafer to cover the gate. An etching back process is then performed to remove portions of both the dielectric layer and the silicon oxide spacer. Finally, a silicon nitride spacer is formed on the dielectric layer around the cap layer. The silicon nitride spacer is positioned on the surface of the dielectric layer and functions in reducing stress between the silicon nitride spacer and the substrate.
Abstract:
A method for forming a semiconductor dielectric layer comprising the steps of providing a substrate having a plurality of semiconductor devices already formed thereon, and then forming a first dielectric layer over the substrate. Next, a silicon oxy-nitride layer is formed over the first dielectric layer, and finally a second dielectric layer is formed over the silicon oxy-nitride layer.
Abstract:
A method for fabricating a double-cylinder capacitor is provided. The double-cylinder capacitor has a storage electrode having dual, concentric cylinder structures. The dielectric layer and the top electrode are formed in sequence over the bottom electrode. The storage area is thus enlarged by the double-cylinder capacitor of the invention. Thus, the capacitance of the capacitor can be effectively increased.
Abstract:
A process of fabricating a bottom electrode for the storage capacitors of DRAM is disclosed. The process includes first forming an insulation layer on the surface of the device substrate, with the insulation layer patterned to form a contact opening that exposes a source/drain region of the memory cell transistor. A first conductive layer then covers the insulation layer and fills into the contact opening, with the first conductive layer contacting the exposed source/drain region. A native oxide layer is then formed on the surface of the first conductive layer. A second electrically conductive layer is then formed and patterned to form a recess substantially above the location of the contact opening in the insulation layer. A layer of HSG—Si then covers the surface of the second conductive layer and the surface of the recess, and the HSG—Si layer and the second conductive layer are patterned to form the bottom electrode of the capacitor. The recess and its covering HSG—Si layer increase the effective surface area of the bottom electrode of the capacitor.
Abstract:
A method of fabricating a bottom electrode is described. A substrate having a conductive layer therein is provided. A first dielectric layer is formed over the substrate. A conductive plug is formed through the first dielectric layer to electrically couple with the conductive layer. A cap layer is formed over the substrate to cover the conductive plug. An isolation layer is formed over the cap layer. A plurality of bit lines is formed over the isolation layer. A second dielectric layer is formed over the isolation layer. A node contact opening is formed through the second dielectric layer, the bit lines and the isolation layer to expose the cap layer. A conformal isolation layer is formed over the substrate to partially fill the contact node opening. A third dielectric layer having an opening is formed over the substrate. The opening is aligned with the node contact opening. An etching step is performed to remove a portion of the conformal isolation layer exposed by the opening and the cap layer. An isolation spacer remaining from the conformal isolation layer is formed on a sidewall of the contact node opening. A conformal conductive layer is formed in the opening and the node contact opening to make contact with the conductive plug. The third dielectric layer is removed.
Abstract:
A method of manufacturing a bottom electrode of a capacitor. A first dielectric layer is formed on a substrate. A cap layer is formed on the first dielectric layer. A second dielectric layer is formed on the cap layer. A node contact hole is formed to penetrate through the second dielectric layer, the cap layer and the first dielectric layer. A liner layer is formed on a sidewall of the node contact hole. A restraining layer is formed on the second dielectric layer. A patterned conductive layer is formed on a portion of the restraining layer and fills the node contact hole. A selective hemispherical grained layer is formed on the patterned conductive layer.
Abstract:
A method for forming a different width of gate spacer is disclosed. The method includes firstly forming a gate oxide layer on a semiconductor substrate. A polysilicon layer, a conductive layer, a first dielectric layer are formed in order on the gate oxide layer. The first dielectric layer, the conductive layer, the polysilicon layer, and the gate oxide layer are further etched using them as the interior gate and the peripheral gate. Next, second dielectric layer, third dielectric layer, and fourth dielectric layer are formed over the interior gate and the peripheral gate, and a first photoresist layer abuts the surface of the fourth dielectric layer of the interior circuit. Moreover, etching the fourth dielectric layer of peripheral gate to form a second spacer of peripheral gate, and etching the third dielectric layer of the peripheral gate are undertaken to form a first spacer of the peripheral gate. Removing the first photoresist layer and the fourth dielectric layer of the interior circuit, a fifth dielectric layer is formed on the third dielectric layer of the interior circuit. The fourth dielectric layer and the top surface of the second dielectric layer of the peripheral circuit are removed. The fifth dielectric layer is formed on the first dielectric layer and the third peripheral of the peripheral circuit, and then the second photoresist layer on the fifth dielectric layer, wherein the third photoresist layer is patterned as a bit-line contact via of the interior circuit and the bit-line contact vias of the peripheral circuit. Finally, anisotropically etching the third photoresist layer and the fifth dielectric layer, a bit-line to the substrate contact via and a bit-line to the gate contact via are formed inside the fifth dielectric layer.