Abstract:
Semiconductor device packaging methods and structures thereof are disclosed. In one embodiment, a method of packaging semiconductor devices includes coupling a plurality of second dies to a top surface of a first die, and determining a distance between each of the plurality of second dies and the first die. The method also includes determining an amount of underfill material to dispose between the first die and each of the plurality of second dies based on the determined distance, and disposing the determined amount of the underfill material under each of the plurality of second dies.
Abstract:
A mounting assembly is configured in a case having an opening and a door panel. The door panel is pivoted to the case so as to cover the opening or uncover the opening by removing the door panel. The mounting assembly includes at least one fixing rod, a stopper member, at least one elastic member and an actuator. The fixing rod is disposed on one inner side of the case adjacent to the opening. The stopper member and the elastic member are movably disposed on the fixing rod. The actuator is disposed on the door panel. When the door panel covers the opening, the actuator is incorporated with the stopper member, such that the stopper member shields the opening, so as to avoid an object moving around or away from the case through the opening.
Abstract:
A low temperature poly-silicon thin film element, method of making poly-silicon thin film by direct deposition at low temperature, and the inductively-coupled plasma chemical vapor deposition equipment utilized, wherein the poly-silicon material is induced to crystallize into a poly-silicon thin film at low temperature by means of high density plasma and substrate bias voltage. Furthermore, the atom structure of the poly-silicon thin film is aligned in regular arrangement by making use of the induction layer having optimal orientation and lattice constant close to that of the silicon, thus raising the crystallization quality of the poly-silicon thin film and reducing the thickness of the incubation layer.
Abstract:
A lid mechanism for an interface slot opening of notebook computers includes a notebook computer body, which has an interface slot opening on a lateral side and a first sliding trough formed on one side of the opening, and a lid located on the interface slot opening in a turning manner to close the opening. The lid includes a lid body, which has a recess on the surface in the center, an inner surface attaching to a water-proof plate and a second sliding trough on an upper side corresponding to the first sliding trough. The recess has a lever fastening to a latch arm and driving the latch arm, to move in the second sliding trough. When the lid is in a closed condition to compress the waterproof plate, the latch arm is wedged gradually in the first sliding trough.
Abstract:
A lid mechanism for an interface slot opening of notebook computers includes a notebook computer body, which has an interface slot opening on a lateral side and a first sliding trough formed on one side of the opening, and a lid located on the interface slot opening in a turning manner to close the opening. The lid includes a lid body, which has a recess on the surface in the center, an inner surface attaching to a water-proof plate and a second sliding trough on an upper side corresponding to the first sliding trough. The recess has a lever fastening to a latch arm and driving the latch arm, to move in the second sliding trough. When the lid is in a closed condition to compress the waterproof plate, the latch arm is wedged gradually in the first sliding trough.
Abstract:
An antenna connection module adopted for use on electronic devices has an anchoring and rotary structure to provide discrete and staged positioning. It includes a rotary tray, which has a plurality of anchor troughs formed thereon, and an antenna dock coupled with the rotary tray to turn relative to the rotary tray without separating. The antenna dock houses rolling balls that engage with the anchor troughs to provide discrete and staged clicking and anchoring effects.
Abstract:
An injection molding apparatus has a barrel for conveying a molten substance, a screw, a first base for supporting the barrel, a power unit, a second base for supporting the power unit, links, a motor, a screw driver, a plurality of injection guide links, and an injection connecting plate. The first base is threadedly secured to the bed. The barrel has one end secured to the first base. The power unit is fixed on the second base. The links each have one end connected to the first base and the other end connected to the second base. The screw driver between the bases is moved under the guidance of the injection guide links. The injection guide links penetrate through the second base, having one end secured to the screw driver with the injection connecting plate provided in the second base. The injection connecting plate is pivotably secured to the power unit. These features are adopted to the deformation caused by heat, and provide a closed loop of force, isolation of deformation, and a modular design that is particularly suitable to high speed injection molding.
Abstract:
A display system is disclosed. The display system includes several electrical apparatuses and a display control unit. The display control unit builds connections with the electrical apparatuses. The display control unit includes an information generating module and a display driving module. When the display system is in a combination display mode, the information generating module detects and generates combination information about combination relations among the display units of the electrical apparatuses. The display driving module drives each of the display units to display a corresponding image block according to the combination information. Hence, the displayed corresponding image blocks can be combined to form an entire image. A display method is also disclosed.
Abstract:
A wireless transmission system includes several candidate devices, a wireless transmission interface and a wireless transmission device. The wireless transmission device includes a storage unit, a transmission direction information generating unit and a processing unit. The processing unit receives the device information of each of the candidate devices from each of the candidate devices respectively through the wireless transmission interface. The processing unit calculates transmission direction range according to the transmission direction information, which is generated through the transmission direction information generating unit. The processing unit selects at least one of the candidate devices, which matches the transmission direction range. Wherein, the selected at least one candidate device is taken as at least one transmission target device. The processing unit transmits the information to be transmitted, which is stored in the storage unit, to the transmission target device through the wireless transmission interface.