Abstract:
A graphene light-emitting device and a method of manufacturing the same are provided. The graphene light-emitting device includes a p-type graphene doped with a p-type dopant; an n-type graphene doped with an n-type dopant; and an active graphene that is disposed between the type graphene and the n-type graphene and emits light, wherein the p-type graphene, the n-type graphene, and the active graphene are horizontally disposed.
Abstract:
There are disclosed a group III nitride nanorod light emitting device and a method of manufacturing thereof. The group III nitride nanorod light emitting device includes a substrate, an insulating film formed on the substrate, and including a plurality of openings exposing parts of the substrate and having different diameters, and first conductive group III nitride nanorods having different diameters, respectively formed in the plurality of openings, wherein each of the first conductive group III nitride nanorods has an active layer and a second conductive semiconductor layer sequentially formed on a surface thereof.
Abstract:
A group III nitride nanorod light emitting device and a method of manufacturing thereof. The method includes preparing a substrate, forming an insulating film including one or more openings exposing parts of the substrate on the substrate, growing first conductive group III nitride nanorod seed layers on the substrate exposed through the openings by supplying a group III source gas and a nitrogen (N) source gas thereto, growing first conductive group III nitride nanorods on the first conductive group III nitride nanorod seed layers by supplying the group III source gas and an impurity source gas in a pulse mode and continuously supplying the N source gas, forming an active layer on a surface of each of the first conductive group III nitride nanorods, and forming a second conductive nitride semiconductor layer on the active layer.
Abstract:
There is provided a nitride semiconductor light emitting device. A nitride semiconductor light emitting device according to an aspect of the invention may include: an n-type nitride semiconductor layer provided on a substrate; an active layer provided on the n-type nitride semiconductor layer, and including quantum barrier layers and quantum well layers; and a p-type nitride semiconductor layer provided on the active layer, wherein each of the quantum barrier layers includes a plurality of InxGa(1-x)N layers (0
Abstract translation:提供了一种氮化物半导体发光器件。 根据本发明的一个方面的氮化物半导体发光器件可以包括:设置在衬底上的n型氮化物半导体层; 设置在n型氮化物半导体层上的有源层,并且包括量子势垒层和量子阱层; 以及设置在有源层上的p型氮化物半导体层,其中每个量子势垒层包括多个In x Ga(1-x)N层(0
Abstract:
A graphene quantum dot light emitting device includes: a first graphene; a graphene quantum dot layer disposed on the first graphene and including a plurality of graphene quantum dots; and a second graphene disposed on the graphene quantum dot layer. A method of manufacturing a graphene quantum dot light emitting device includes: forming a first graphene doped with a first dopant; forming a graphene quantum dot layer including a plurality of graphene quantum dots on the first graphene; and forming a second graphene doped with a second dopant on the graphene quantum dot layer.
Abstract:
A group III nitride nanorod light emitting device and a method of manufacturing thereof. The method includes preparing a substrate, forming an insulating film including one or more openings exposing parts of the substrate on the substrate, growing first conductive group III nitride nanorod seed layers on the substrate exposed through the openings by supplying a group III source gas and a nitrogen (N) source gas thereto, growing first conductive group III nitride nanorods on the first conductive group III nitride nanorod seed layers by supplying the group III source gas and an impurity source gas in a pulse mode and continuously supplying the N source gas, forming an active layer on a surface of each of the first conductive group III nitride nanorods, and forming a second conductive nitride semiconductor layer on the active layer.
Abstract:
There are disclosed a group III nitride nanorod light emitting device and a method of manufacturing thereof. The group III nitride nanorod light emitting device includes a substrate, an insulating film formed on the substrate, and including a plurality of openings exposing parts of the substrate and having different diameters, and first conductive group III nitride nanorods having different diameters, respectively formed in the plurality of openings, wherein each of the first conductive group III nitride nanorods has an active layer and a second conductive semiconductor layer sequentially formed on a surface thereof.
Abstract:
There is provided a nitride semiconductor light emitting device. A nitride semiconductor light emitting device according to an aspect of the invention may include: an n-type nitride semiconductor layer provided on a substrate; an active layer provided on the n-type nitride semiconductor layer, and including quantum barrier layers and quantum well layers; and a p-type nitride semiconductor layer provided on the active layer, wherein each of the quantum barrier layers includes a plurality of InxGa(1-x)N layers (0
Abstract translation:提供了一种氮化物半导体发光器件。 根据本发明的一个方面的氮化物半导体发光器件可以包括:设置在衬底上的n型氮化物半导体层; 设置在n型氮化物半导体层上的有源层,并且包括量子势垒层和量子阱层; 以及设置在有源层上的p型氮化物半导体层,其中每个量子势垒层包括多个In x Ga(1-x)N层(0
Abstract:
A graphene light-emitting device and a method of manufacturing the same are provided. The graphene light-emitting device includes a p-type graphene doped with a p-type dopant; an n-type graphene doped with an n-type dopant; and an active graphene that is disposed between the type graphene and the n-type graphene and emits light, wherein the p-type graphene, the n-type graphene, and the active graphene are horizontally disposed.