摘要:
An LED includes a compound semiconductor structure having first and second compound layers and an active layer, first and second electrode layers atop the second compound semiconductor layer and connected to respective compound layers. An insulating layer is coated in regions other than where the first and second electrode layers are located. A conducting adhesive layer is formed atop the non-conductive substrate, connecting the same to the first electrode layer and insulating layer. Formed on one side surface of the non-conductive substrate and adhesive layer is a first electrode connection layer connected to the conducting adhesive layer. A second electrode connection layer formed on another side surface is connected to the second electrode layer. By forming connection layers on respective side surfaces of the light-emitting device, manufacturing costs can be reduced.
摘要:
Example embodiments are directed to a polarized light emitting diode and method of forming the same. The polarized light emitting diode may include a support layer, a semiconductor layer structure, and/or a polarization control layer. The semiconductor layer structure may be formed on the support layer and may include a light-emitting layer. The polarization control layer may be formed on the semiconductor layer structure and may include a plurality of metal nanowires. The polarized light emitting diode may be configured to control the polarization of emitted light. The method of forming a polarized light emitting diode may include forming on a substrate a semiconductor layer structure with a light emitting layer. A reflecting layer may be formed on the semiconductor layer structure with an attached support layer. The substrate may be removed from the semiconductor layer structure and a polarization control layer including metal nanowires may be formed on the semiconductor layer structure.
摘要:
A LED device is provided having a diffuse reflective surface which includes an LED chip emitting light, a reflector cup having the LED chip arranged at a bottom surface thereof and having an angled surface which diffusely reflects the light emitted by the LED chip, and a light conversion material provided in the reflector cup for converting the light emitted by the LED chip into visible light rays. The light-conversion material is spatially separated from the LED chip by a length equal or greater than the maximum length of the LED chip.
摘要:
A nitride-based semiconductor light-emitting device having an improved structure to enhance light extraction efficiency, and a method of manufacturing the same are provided. The method includes the operations of sequentially forming an n-clad layer, an active layer, and a p-clad layer on a substrate; forming a plurality of masking dots on an upper surface of the p-clad layer; forming a p-contact layer having a rough surface on portions of the p-clad layer between the masking dots; forming a rough n-contact surface of the n-clad layer having the same rough shape as the rough shape of the p-contact layer by dry-etching from a portion of the upper surface of the p-contact layer to a desired depth of the n-clad layer; forming an n-electrode on the rough n-contact surface; and forming a p-electrode on the p-contact layer.
摘要:
Provided is a method of manufacturing a nitride-based semiconductor light-emitting device having an improved structure in which optical extraction efficiency is improved. The method of manufacturing a nitride-based semiconductor light-emitting device including an n-doped semiconductor layer, an active layer, a p-doped semiconductor layer, an n-electrode and a p-electrode includes: forming an azobenzene-functionalized polymer film on a base layer by selecting one layer from the group consisting of the n-doped semiconductor layer, the p-doped semiconductor layer, the n-electrode and the p-electrode as the base layer; forming surface relief gratings of a micro-pattern caused by a photophysical mass transport property of azobenzene-functionalized polymer by irradiating interference laser beams onto the azobenzene-functionalized polymer film; forming a photonic crystal layer using a metal oxide on a recessed gap of the azobenzene-functionalized polymer film, and removing the azobenzene-functionalized polymer film.
摘要:
Provided is a red phosphor which is excellent in emission efficiency by a long wavelength UV excitation source and has a fine and uniform particle size. The red phosphor includes a compound represented by (Li.sub.(2−z)−xM.sub.x)(AO.sub.4).sub.y:Eu.sub.z,Sm.sub.q and a flux wherein M is K, Mg, Na, Ca, Sr, or Ba, A is Mo or W, 0.ltoreq.x.ltoreq.2, 0.5.ltoreq.y.ltoreq.5, 0.01.ltoreq.z.ltoreq.1.5, and 0.001.ltoreq.q.ltoreq.1.0. Provided is also a method of preparing the red phosphor.
摘要:
An omni-directional reflector having a transparent conductive low-index layer formed of conductive nanorods and a light emitting diode utilizing the omni-directional reflector are provided. The omni-directional reflector includes: a transparent conductive low-index layer formed of conductive nanorods; and a reflective layer formed of a metal.
摘要:
A LED device is provided having a diffuse reflective surface which includes an LED chip emitting light, a reflector cup having the LED chip arranged at a bottom surface thereof and having an angled surface which diffusely reflects the light emitted by the LED chip, and a light conversion material provided in the reflector cup for converting the light emitted by the LED chip into visible light rays. The light-conversion material is spatially separated from the LED chip by a length equal or greater than the maximum length of the LED chip.
摘要:
Provided is a red phosphor which is excellent in emission efficiency by a long wavelength UV excitation source and has a fine and uniform particle size. The red phosphor includes a compound represented by (Li(2-z)-xMx)(AO4)y:Euz,Smq and a flux wherein M is K, Mg, Na, Ca, Sr, or Ba, A is Mo or W, 0≦x≦2, 0.5≦y≦5, 0.01≦z≦1.5, and 0.001≦q≦1.0. Provided is also a method of preparing the red phosphor.
摘要翻译:提供了通过长波长UV激发源具有优异的发光效率并且具有细小且均匀的粒径的红色荧光体。 红色荧光体包括由(Li 2(2-z)-x M x x)(AO 4)x(x) 其中M是K,Mg,Na,Ca,Sr或Ba,A是Mo或W,0 < = x <= 2,0.5 <= y <= 5,0.01 <= z <= 1.5,0.001 <= q <= 1.0。 还提供了制备红色荧光体的方法。
摘要:
A semiconductor light emitting device including means for reducing strain and carrier overflow caused by injection of a number of carriers in semiconductor light emitting devices using GaN is provided. The semiconductor light emitting device includes a multi-quantum barrier formed by depositing an AlGaN/GaN double layer a predetermined number of times, or a strain-compensating multiple quantum barrier formed at either the upper or lower sides of an active layer by depositing an AlGaN/InGaN double layer a predetermined number of times, and does not need a p-type clad layer.