摘要:
Method of Fabricating Interconnections of a Microelectronic Device Using a Dual Damascene Process. A method of fabricating interconnections of a microelectronic device includes preparing a semiconductor substrate comprising a lower dielectric layer and a lower interconnection, forming an etch stopper layer and an interlayer dielectric layer on the semiconductor substrate, forming a via hole in the interlayer dielectric layer so that the etch stopper layer is exposed through the via hole, performing carbon doping on the etch stopper layer, performing trench etching to form a trench in the interlayer dielectric layer so that the trench overlaps part of the via hole, removing the carbon-doped etch stopper layer, and filling the via hole and the trench with a conductive material to form an upper interconnection.
摘要:
Method of Fabricating Interconnections of a Microelectronic Device Using a Dual Damascene Process. A method of fabricating interconnections of a microelectronic device includes preparing a semiconductor substrate comprising a lower dielectric layer and a lower interconnection, forming an etch stopper layer and an interlayer dielectric layer on the semiconductor substrate, forming a via hole in the interlayer dielectric layer so that the etch stopper layer is exposed through the via hole, performing carbon doping on the etch stopper layer, performing trench etching to form a trench in the interlayer dielectric layer so that the trench overlaps part of the via hole, removing the carbon-doped etch stopper layer, and filling the via hole and the trench with a conductive material to form an upper interconnection.
摘要:
An integrated circuit system that includes: providing a PFET device including a doped epitaxial layer; and forming a source/drain extension by employing an energy source to diffuse a dopant from the doped epitaxial layer.
摘要:
A method of making a semiconductor device is disclosed. A semiconductor body, a gate electrode and source/drain regions are provided. A liner is provided that covers the gate electrode and the source/drain regions. Silicide regions are formed on the semiconductor device by etching a contact hole through the liner.