Abstract:
A power transmission shaft performs a fuse-like function when excessive torque is applied to a power input side. The power transmission shaft includes: a main shaft connected to a power device; flanges connected to the power device and provided at both sides of the main shaft; and a flexible coupling extending in the radial direction of the main shaft. The power transmission shaft includes a power shutoff unit which shuts off power by breaking the main shaft or the flanges when torque greater than a predetermined level is applied. When excessive torque is applied to the power input side, the power transmission shaft performs a fuse-like function with respect to the excessive torque, thereby enhancing safety, preventing sparks from occurring at the time of the breakage, facilitating the production thereof, and effectively preventing vibration while sufficiently supporting the speed or load in the event of a high rotation rate.
Abstract:
The present invention relates to a method for forming a ceramic coating having improved plasma resistance and a ceramic coating formed thereby. The present invention discloses the method for forming the ceramic coating having improved plasma resistance and the ceramic coating formed thereby, comprising the steps of: receiving, from a powder supply portion, a plurality of ceramic powders having a first powder particle size range, and transporting the powders using a transport gas; and forming a ceramic coating in which a plurality of first ceramic particles within a first coating particle size range and a plurality of second ceramic particles within a second coating particle size range, which is larger than the first coating particle size range, by causing the transported ceramic powders to collide with a substrate inside a process chamber, at the speed of 100 to 500 m/s so as to be pulverized.
Abstract:
The present invention relates to plasma-resistant glass containing 32-52 mol % of SiO2, 5-15 mol % of Al2O3, 30-35 mol % of CaO, and 0.1-15 mol % of CaF2 as chemical components, and a manufacturing method thereof. According to the present invention, a glass stability index KH is 2.0 or higher, and a plasma-resistant characteristic of an etch rate of lower than 10 nm/min for a mixed plasma of fluorine and argon (Ar) is exhibited.
Abstract:
A power transmission shaft which alleviates phenomenon in which stress is concentrated on a specific portion of a diaphragm to improve fatigue life span. The power transmission shaft connects a power apparatus and includes a flexible coupling, which is configured by a hub unit positioned inside in a radial direction. A rim unit is positioned outside in a radial direction of the hub unit. A flexible diaphragm unit is positioned between the hub unit and the rim unit. The thickness in the axial direction of the flexible diaphragm unit, from the hub unit toward the rim unit, becomes thinner then thicker to have a minimum thickness interval. The flexible diaphragm unit has a contoured first side on one side in the axial direction and a contoured second side on the other side. The first side has a first inflection point and the second side has a second inflection point.
Abstract:
The present invention relates to a plasma-resistant glass, chamber interior parts for a semiconductor manufacturing process, and methods for manufacturing same, and specifically, to a plasma-resistant glass and a method for manufacturing same, wherein the content of components of the plasma-resistant glass can be controlled to reduce the thermal expansion coefficient of the glass and thereby prevent the glass from being damaged due to thermal shock when used at a high-temperature.
Abstract:
The present invention discloses the method for forming the coating having the composite coating particle size and the coating formed thereby, comprising the steps of: receiving, from a powder supply portion, a plurality of powders within a first powder particle size range, and transporting the powders using a transport gas; and forming a coating in which a plurality of first particles within a first coating particle size range and a plurality of second particles within a second coating particle size range, which is larger than the first coating particle size range, by causing the transported powders to collide with a substrate inside a process chamber at the speed of 100 to 500 m/s so as to be pulverized.
Abstract:
An embodiment of the present invention relates to a plasma-resistant glass, and a manufacturing method therefor, and the present invention is intended to provide a plasma-resistant glass having improved plasma resistance properties, and a manufacturing method therefor. To this end, the present invention provides a plasma-resistant glass including SiO2 in an amount of 40 to 75 mol %, Al2O3 in an amount of 5 to 20 mol %, MgO in an amount of 10 to 40 mol %, and MgF2 in an amount of 0.01 to 10 mol %, and a manufacturing method therefor.
Abstract:
The present invention relates to a method for forming a ceramic coating having improved plasma resistance and a ceramic coating formed thereby. The present invention discloses the method for forming the ceramic coating having improved plasma resistance and the ceramic coating formed thereby, comprising the steps of: receiving, from a powder supply portion, a plurality of ceramic powders having a first powder particle size range, and transporting the powders using a transport gas; and forming a ceramic coating in which a plurality of first ceramic particles within a first coating particle size range and a plurality of second ceramic particles within a second coating particle size range, which is larger than the first coating particle size range, by causing the transported ceramic powders to collide with a substrate inside a process chamber, at the speed of 100 to 500 m/s so as to be pulverized.
Abstract:
The present invention discloses the method for forming the coating having the composite coating particle size and the coating formed thereby, comprising the steps of: receiving, from a powder supply portion, a plurality of powders within a first powder particle size range, and transporting the powders using a transport gas; and forming a coating in which a plurality of first particles within a first coating particle size range and a plurality of second particles within a second coating particle size range, which is larger than the first coating particle size range, by causing the transported powders to collide with a substrate inside a process chamber at the speed of 100 to 500 m/s so as to be pulverized.